如圖,已知:在直角梯形ABCD中,AB∥CD,AD⊥CD,AB=BC,又AE⊥BC于E.求證:AD=AE.
分析:先連接AC,根據(jù)AB=BC,得出∠BAC=∠BCA,再根據(jù)AB∥CD,得出∠BAC=∠ACD,然后根據(jù)AD⊥CD,得出∠ADC=∠AEC=90°,即可證出△ACD≌△ACE,從而得出AD=AE.
解答:證明:連接AC
∵AB=BC,
∴∠BAC=∠BCA,
又∵AB∥CD,
∴∠BAC=∠ACD,
∴∠ACD=∠ACE,
∵∠D=∠AEC=90°,
又∵AC=AC,
∴△ACD≌△ACE,
∴AD=AE.
點評:此題考查了直角梯形,全等三角形的判定與性質(zhì);解題的關鍵是根據(jù)題意進行連接,得出△ACD≌△ACE.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年河南省周口市初一下學期相交線與平行線專項訓練 題型:解答題

如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個

單位長度的速度向A點勻速運動,到達A點后立即以原速沿AO返回;點Q從A點出發(fā)

沿AB以每秒1個單位長度的速度向點B勻速運動.當Q到達B時,P、Q兩點同時停止

運動,設P、Q運動的時間為t秒(t>0).

(1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關系式;

(2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.

求出此時△APQ的面積.

(3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯

形?若存在,求出點E的坐標;若不存在,請說明理由.

(4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當DF經(jīng)過原點O時,請直接寫出t的值.

 

查看答案和解析>>

科目:初中數(shù)學 來源:2011年河南省周口市初一下學期平移專項訓練 題型:解答題

如圖,以Rt△ABO的直角頂點O為原點,OA所在的直線為x軸,OB所在的直線為y軸,建立平面直角坐標系.已知OA=4,OB=3,一動點P從O出發(fā)沿OA方向,以每秒1個

單位長度的速度向A點勻速運動,到達A點后立即以原速沿AO返回;點Q從A點出發(fā)

沿AB以每秒1個單位長度的速度向點B勻速運動.當Q到達B時,P、Q兩點同時停止

運動,設P、Q運動的時間為t秒(t>0).

(1) 試求出△APQ的面積S與運動時間t之間的函數(shù)關系式;

(2) 在某一時刻將△APQ沿著PQ翻折,使得點A恰好落在AB邊的點D處,如圖①.

求出此時△APQ的面積.

(3) 在點P從O向A運動的過程中,在y軸上是否存在著點E使得四邊形PQBE為等腰梯

形?若存在,求出點E的坐標;若不存在,請說明理由.

(4) 伴隨著P、Q兩點的運動,線段PQ的垂直平分線DF交PQ于點D,交折線QB-BO-OP于點F. 當DF經(jīng)過原點O時,請直接寫出t的值.

 

查看答案和解析>>

同步練習冊答案