【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線交AC于點E,過點E作BE的垂線交AB于點F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線;
(2)過點E作EH⊥AB,垂足為H,求證:CD=HF;
(3)若CD=1,EH=3,求BF及AF長.
【答案】(1)證明見解析;(2)證明見解析;(3)
【解析】試題分析:(1)連接OE,由于BE是角平分線,則有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代換有∠OEB=∠CBE,那么利用內(nèi)錯角相等,兩直線平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切線;(2)連結(jié)DE,先根據(jù)AAS證明△CDE≌△HFE,再由全等三角形的對應(yīng)邊相等即可得出CD=HF;(3)由(2)中CD=HF,即可求出HF的值,先求OA和OF的長度,再由AF=OA-OF求出AF的值;
試題解析:
(1)連接OE,由于BE是角平分線,則有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代換有∠OEB=∠CBE,那么利用內(nèi)錯角相等,兩直線平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切線;
(2)連結(jié)DE,先根據(jù)AAS證明△CDE≌△HFE,再由全等三角形的對應(yīng)邊相等即可得出CD=HF
證明:(1)如圖,連接OE.
∵BE平分∠ABC,
∴∠CBE=∠OBE,
∵OB=OE,
∴∠OBE=∠OEB,
∴∠OEB=∠CBE,
∴OE∥BC,
∴∠AEO=∠C=90°,
∴AC是⊙O的切線;
(2)如圖,連結(jié)DE.
∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,
∴EC=EH.
∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,
∴∠CDE=∠HFE.
在△CDE與△HFE中,
,
∴△CDE≌△HFE(AAS),
∴CD=HF.
(3)由(2)得,CD=HF.又CD=1
∴HF=1
在Rt△HFE中,EF==
∵EF⊥BE
∴∠BEF=90°
∴∠EHF=∠BEF=90°
∵∠EFH=∠BFE
∴△EHF∽△BEF
∴,即
∴BF=10
∴, ,
∴在Rt△OHE中, ,
∴在Rt△EOA中, ,
∴
∴
∴.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,直線和拋物線W交于A,B兩點,其中點A是拋物線W的頂點.當點A在直線上運動時,拋物線W隨點A作平移運動.在拋物線平移的過程中,線段AB的長度保持不變.
應(yīng)用上面的結(jié)論,解決下列問題:
在平面直角坐標系xOy中,已知直線.點A是直線上的一個動點,且點A的橫坐標為.以A為頂點的拋物線與直線的另一個交點為點B.
(1)當時,求拋物線的解析式和AB的長;
(2)當點B到直線OA的距離達到最大時,直接寫出此時點A的坐標;
(3)過點A作垂直于軸的直線交直線于點C.以C為頂點的拋物線與直線的另一個交點為點D.
①當AC⊥BD時,求的值;
②若以A,B,C,D為頂點構(gòu)成的圖形是凸四邊形(各個內(nèi)角度數(shù)都小于180°)時,直接寫出滿足條件的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某醫(yī)藥研究所進行某一治療病毒新藥的開發(fā),經(jīng)過大量的服用試驗后知:成年人按規(guī)定的劑量服用后,每毫克血液中含藥量y微克(1微克=10-3毫克)隨時間x小時的變化規(guī)律與某一個二次函數(shù)y=ax2+bx+c (a≠0)相吻合,并測得服用時(即時間為0時)每毫升血液中含藥量為0微克;服用后2小時每毫升血液中含藥量為6微克,服用后3小時,每毫升血液中含藥量為7.5微克.
(1)求出含藥量y(微克)與服藥時間x(小時)的函數(shù)關(guān)系式;并畫出0≤x≤8內(nèi)的函數(shù)的圖象的示意圖;
(2)求服藥后幾小時才能使每毫升血液中含藥量最大?并求出血液中的最大含藥量;
(3)結(jié)合圖象說明一次服藥后的有效時間是多少小時?(有效時間為血液中含藥量不為0的總時間)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為半圓的直徑,點D在半圓弧上,過點D作AB的平行線與過點A半圓的切線交于點C,點E在AB上,若DE垂直平分BC,則=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=3cm.動點P從點A出發(fā),以cm/s的速度沿AB方向運動到點B.動點Q同時從點A出發(fā),以1cm/s的速度沿折線ACCB方向運動到點B.設(shè)△APQ的面積為y(cm2).運動時間為x(s),則下列圖象能反映y與x之間關(guān)系的是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在下面的兩位數(shù)18, 27,36, 45,54,63,72,81,99都是9的整數(shù)倍,小明發(fā)現(xiàn)這些數(shù)的個位數(shù)字與十位數(shù)字的和也都是9的整數(shù)倍,例如18的的個位數(shù)字8與十位數(shù)字1的和是9.于是小明有了這樣的結(jié)論:個位數(shù)字與十位數(shù)字的和是9的倍數(shù)的兩位數(shù)一定是9的倍數(shù).小明經(jīng)過思考后給出了如下的證明:
設(shè)十位上的數(shù)字為,個位上的數(shù)字為,并且(為正整數(shù))
那么這個兩位數(shù)可表示為
∴這個兩位數(shù)是9的倍數(shù)
小明猜想:個位數(shù)字與十位數(shù)字與百位數(shù)字的和是9的倍數(shù)的三位數(shù)也一定是9的倍數(shù).小明的這個猜想的結(jié)論是否正確?若正確模仿小明的證明思路給出證明,若不正確舉出反例.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某同學(xué)報名參加校運動會,有以下4個項目可供選擇:徑賽項目:100m,200m(分別用A1、A2表示).田賽項目:跳遠,跳高(分用B1,B2表示).
(1)該同學(xué)從4個項目中任選一個,恰好是田賽項目的概率為 .
(2)該同學(xué)從4個項目中任選兩個,利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個田賽項目和一個徑賽項目的概率 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,CF⊥AB于點F,過點D作DE⊥BC的延長線于點E,且CF=DE.
(1)求證:△BFC≌△CED;
(2)若∠B=60°,AF=5,求BC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如圖,把經(jīng)過拋物線 (,, ,為常數(shù))與軸的交點和頂點的直線稱為拋物線的“伴線”,若拋物線與軸交于,兩點(在的右側(cè)),經(jīng)過點和點的直線稱為拋物線的“標線”.
(1)已知拋物線,求伴線的解析式.
(2)若伴線為,標線為,
①求拋物線的解析式;
②設(shè)為“標線”上一動點,過作平行于“伴線”,交“標線”上方的拋物線于,求線段長的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com