【題目】如圖,在△ABC中,∠C=90°,∠ABC的平分線(xiàn)交AC于點(diǎn)E,過(guò)點(diǎn)E作BE的垂線(xiàn)交AB于點(diǎn)F,⊙O是△BEF的外接圓.
(1)求證:AC是⊙O的切線(xiàn);
(2)過(guò)點(diǎn)E作EH⊥AB,垂足為H,求證:CD=HF;
(3)若CD=1,EH=3,求BF及AF長(zhǎng).
【答案】(1)證明見(jiàn)解析;(2)證明見(jiàn)解析;(3)
【解析】試題分析:(1)連接OE,由于BE是角平分線(xiàn),則有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代換有∠OEB=∠CBE,那么利用內(nèi)錯(cuò)角相等,兩直線(xiàn)平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切線(xiàn);(2)連結(jié)DE,先根據(jù)AAS證明△CDE≌△HFE,再由全等三角形的對(duì)應(yīng)邊相等即可得出CD=HF;(3)由(2)中CD=HF,即可求出HF的值,先求OA和OF的長(zhǎng)度,再由AF=OA-OF求出AF的值;
試題解析:
(1)連接OE,由于BE是角平分線(xiàn),則有∠CBE=∠OBE;而OB=OE,就有∠OBE=∠OEB,等量代換有∠OEB=∠CBE,那么利用內(nèi)錯(cuò)角相等,兩直線(xiàn)平行,可得OE∥BC;又∠C=90°,所以∠AEO=90°,即AC是⊙O的切線(xiàn);
(2)連結(jié)DE,先根據(jù)AAS證明△CDE≌△HFE,再由全等三角形的對(duì)應(yīng)邊相等即可得出CD=HF
證明:(1)如圖,連接OE.
∵BE平分∠ABC,
∴∠CBE=∠OBE,
∵OB=OE,
∴∠OBE=∠OEB,
∴∠OEB=∠CBE,
∴OE∥BC,
∴∠AEO=∠C=90°,
∴AC是⊙O的切線(xiàn);
(2)如圖,連結(jié)DE.
∵∠CBE=∠OBE,EC⊥BC于C,EH⊥AB于H,
∴EC=EH.
∵∠CDE+∠BDE=180°,∠HFE+∠BDE=180°,
∴∠CDE=∠HFE.
在△CDE與△HFE中,
,
∴△CDE≌△HFE(AAS),
∴CD=HF.
(3)由(2)得,CD=HF.又CD=1
∴HF=1
在Rt△HFE中,EF==
∵EF⊥BE
∴∠BEF=90°
∴∠EHF=∠BEF=90°
∵∠EFH=∠BFE
∴△EHF∽△BEF
∴,即
∴BF=10
∴, ,
∴在Rt△OHE中, ,
∴在Rt△EOA中, ,
∴
∴
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,直線(xiàn)和拋物線(xiàn)W交于A,B兩點(diǎn),其中點(diǎn)A是拋物線(xiàn)W的頂點(diǎn).當(dāng)點(diǎn)A在直線(xiàn)上運(yùn)動(dòng)時(shí),拋物線(xiàn)W隨點(diǎn)A作平移運(yùn)動(dòng).在拋物線(xiàn)平移的過(guò)程中,線(xiàn)段AB的長(zhǎng)度保持不變.
應(yīng)用上面的結(jié)論,解決下列問(wèn)題:
在平面直角坐標(biāo)系xOy中,已知直線(xiàn).點(diǎn)A是直線(xiàn)上的一個(gè)動(dòng)點(diǎn),且點(diǎn)A的橫坐標(biāo)為.以A為頂點(diǎn)的拋物線(xiàn)與直線(xiàn)的另一個(gè)交點(diǎn)為點(diǎn)B.
(1)當(dāng)時(shí),求拋物線(xiàn)的解析式和AB的長(zhǎng);
(2)當(dāng)點(diǎn)B到直線(xiàn)OA的距離達(dá)到最大時(shí),直接寫(xiě)出此時(shí)點(diǎn)A的坐標(biāo);
(3)過(guò)點(diǎn)A作垂直于軸的直線(xiàn)交直線(xiàn)于點(diǎn)C.以C為頂點(diǎn)的拋物線(xiàn)與直線(xiàn)的另一個(gè)交點(diǎn)為點(diǎn)D.
①當(dāng)AC⊥BD時(shí),求的值;
②若以A,B,C,D為頂點(diǎn)構(gòu)成的圖形是凸四邊形(各個(gè)內(nèi)角度數(shù)都小于180°)時(shí),直接寫(xiě)出滿(mǎn)足條件的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某醫(yī)藥研究所進(jìn)行某一治療病毒新藥的開(kāi)發(fā),經(jīng)過(guò)大量的服用試驗(yàn)后知:成年人按規(guī)定的劑量服用后,每毫克血液中含藥量y微克(1微克=10-3毫克)隨時(shí)間x小時(shí)的變化規(guī)律與某一個(gè)二次函數(shù)y=ax2+bx+c (a≠0)相吻合,并測(cè)得服用時(shí)(即時(shí)間為0時(shí))每毫升血液中含藥量為0微克;服用后2小時(shí)每毫升血液中含藥量為6微克,服用后3小時(shí),每毫升血液中含藥量為7.5微克.
(1)求出含藥量y(微克)與服藥時(shí)間x(小時(shí))的函數(shù)關(guān)系式;并畫(huà)出0≤x≤8內(nèi)的函數(shù)的圖象的示意圖;
(2)求服藥后幾小時(shí)才能使每毫升血液中含藥量最大?并求出血液中的最大含藥量;
(3)結(jié)合圖象說(shuō)明一次服藥后的有效時(shí)間是多少小時(shí)?(有效時(shí)間為血液中含藥量不為0的總時(shí)間)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為半圓的直徑,點(diǎn)D在半圓弧上,過(guò)點(diǎn)D作AB的平行線(xiàn)與過(guò)點(diǎn)A半圓的切線(xiàn)交于點(diǎn)C,點(diǎn)E在AB上,若DE垂直平分BC,則=______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=BC=3cm.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以cm/s的速度沿AB方向運(yùn)動(dòng)到點(diǎn)B.動(dòng)點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),以1cm/s的速度沿折線(xiàn)ACCB方向運(yùn)動(dòng)到點(diǎn)B.設(shè)△APQ的面積為y(cm2).運(yùn)動(dòng)時(shí)間為x(s),則下列圖象能反映y與x之間關(guān)系的是 ( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下面的兩位數(shù)18, 27,36, 45,54,63,72,81,99都是9的整數(shù)倍,小明發(fā)現(xiàn)這些數(shù)的個(gè)位數(shù)字與十位數(shù)字的和也都是9的整數(shù)倍,例如18的的個(gè)位數(shù)字8與十位數(shù)字1的和是9.于是小明有了這樣的結(jié)論:個(gè)位數(shù)字與十位數(shù)字的和是9的倍數(shù)的兩位數(shù)一定是9的倍數(shù).小明經(jīng)過(guò)思考后給出了如下的證明:
設(shè)十位上的數(shù)字為,個(gè)位上的數(shù)字為,并且(為正整數(shù))
那么這個(gè)兩位數(shù)可表示為
∴這個(gè)兩位數(shù)是9的倍數(shù)
小明猜想:個(gè)位數(shù)字與十位數(shù)字與百位數(shù)字的和是9的倍數(shù)的三位數(shù)也一定是9的倍數(shù).小明的這個(gè)猜想的結(jié)論是否正確?若正確模仿小明的證明思路給出證明,若不正確舉出反例.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某同學(xué)報(bào)名參加校運(yùn)動(dòng)會(huì),有以下4個(gè)項(xiàng)目可供選擇:徑賽項(xiàng)目:100m,200m(分別用A1、A2表示).田賽項(xiàng)目:跳遠(yuǎn),跳高(分用B1,B2表示).
(1)該同學(xué)從4個(gè)項(xiàng)目中任選一個(gè),恰好是田賽項(xiàng)目的概率為 .
(2)該同學(xué)從4個(gè)項(xiàng)目中任選兩個(gè),利用樹(shù)狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個(gè)田賽項(xiàng)目和一個(gè)徑賽項(xiàng)目的概率 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,CF⊥AB于點(diǎn)F,過(guò)點(diǎn)D作DE⊥BC的延長(zhǎng)線(xiàn)于點(diǎn)E,且CF=DE.
(1)求證:△BFC≌△CED;
(2)若∠B=60°,AF=5,求BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:如圖,把經(jīng)過(guò)拋物線(xiàn) (,, ,為常數(shù))與軸的交點(diǎn)和頂點(diǎn)的直線(xiàn)稱(chēng)為拋物線(xiàn)的“伴線(xiàn)”,若拋物線(xiàn)與軸交于,兩點(diǎn)(在的右側(cè)),經(jīng)過(guò)點(diǎn)和點(diǎn)的直線(xiàn)稱(chēng)為拋物線(xiàn)的“標(biāo)線(xiàn)”.
(1)已知拋物線(xiàn),求伴線(xiàn)的解析式.
(2)若伴線(xiàn)為,標(biāo)線(xiàn)為,
①求拋物線(xiàn)的解析式;
②設(shè)為“標(biāo)線(xiàn)”上一動(dòng)點(diǎn),過(guò)作平行于“伴線(xiàn)”,交“標(biāo)線(xiàn)”上方的拋物線(xiàn)于,求線(xiàn)段長(zhǎng)的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com