(2009•涼山州)將△ABC繞點B逆時針旋轉(zhuǎn)到△A′BC′,使A、B、C′在同一直線上,若∠BCA=90°,∠BAC=30°,AB=4cm,則圖中陰影部分面積為    cm2
【答案】分析:易得整理后陰影部分面積為圓心角為120°,兩個半徑分別為4和2的圓環(huán)的面積.
解答:解:∵∠BCA=90°,∠BAC=30°,AB=4cm,
∴BC=2,AC=2,∠A′BA=120°,∠CBC′=120°,
∴陰影部分面積=(S△A′BC′+S扇形BAA′)-S扇形BCC′-S△ABC=×(42-22)=4πcm2
點評:本題利用了直角三角形的性質(zhì),扇形的面積公式求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2009•涼山州)如圖,已知拋物線y=x2+bx+c經(jīng)過A(1,0),B(0,2)兩點,頂點為D.
(1)求拋物線的解析式;
(2)將△OAB繞點A順時針旋轉(zhuǎn)90°后,點B落到點C的位置,將拋物線沿y軸平移后經(jīng)過點C,求平移后所得圖象的函數(shù)關(guān)系式;
(3)設(shè)(2)中平移后,所得拋物線與y軸的交點為B1,頂點為D1,若點N在平移后的拋物線上,且滿足△NBB1的面積是△NDD1面積的2倍,求點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2009•涼山州)如圖,在平面直角坐標(biāo)系中,點O1的坐標(biāo)為(-4,0),以點O1為圓心,8為半徑的圓與x軸交于A,B兩點,過A作直線l與x軸負方向相交成60°的角,且交y軸于C點,以點O2(13,5)為圓心的圓與x軸相切于點D.
(1)求直線l的解析式;
(2)將⊙O2以每秒1個單位的速度沿x軸向左平移,當(dāng)⊙O2第一次與⊙O1外切時,求⊙O2平移的時間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年中考數(shù)學(xué)考前30天沖刺得分專練8:二次函數(shù)(解析版) 題型:解答題

(2009•涼山州)如圖,已知拋物線y=x2+bx+c經(jīng)過A(1,0),B(0,2)兩點,頂點為D.
(1)求拋物線的解析式;
(2)將△OAB繞點A順時針旋轉(zhuǎn)90°后,點B落到點C的位置,將拋物線沿y軸平移后經(jīng)過點C,求平移后所得圖象的函數(shù)關(guān)系式;
(3)設(shè)(2)中平移后,所得拋物線與y軸的交點為B1,頂點為D1,若點N在平移后的拋物線上,且滿足△NBB1的面積是△NDD1面積的2倍,求點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省杭州市蕭山區(qū)中考數(shù)學(xué)模擬試卷13(黨灣鎮(zhèn)中 葉菁)(解析版) 題型:解答題

(2009•涼山州)如圖,已知拋物線y=x2+bx+c經(jīng)過A(1,0),B(0,2)兩點,頂點為D.
(1)求拋物線的解析式;
(2)將△OAB繞點A順時針旋轉(zhuǎn)90°后,點B落到點C的位置,將拋物線沿y軸平移后經(jīng)過點C,求平移后所得圖象的函數(shù)關(guān)系式;
(3)設(shè)(2)中平移后,所得拋物線與y軸的交點為B1,頂點為D1,若點N在平移后的拋物線上,且滿足△NBB1的面積是△NDD1面積的2倍,求點N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年四川省涼山州中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2009•涼山州)如圖,在平面直角坐標(biāo)系中,點O1的坐標(biāo)為(-4,0),以點O1為圓心,8為半徑的圓與x軸交于A,B兩點,過A作直線l與x軸負方向相交成60°的角,且交y軸于C點,以點O2(13,5)為圓心的圓與x軸相切于點D.
(1)求直線l的解析式;
(2)將⊙O2以每秒1個單位的速度沿x軸向左平移,當(dāng)⊙O2第一次與⊙O1外切時,求⊙O2平移的時間.

查看答案和解析>>

同步練習(xí)冊答案