如圖,已知直線y=2x+2與x軸交于點(diǎn)C,與y軸交于點(diǎn)B,拋物線y=ax2-2ax+c過點(diǎn)C且與直線y=2x+2交于點(diǎn)A(5,12).
(1)求該拋物線的解析式;
(2)D為x軸上方拋物線上一點(diǎn),若△DCO與△DBO的面積相等,求D點(diǎn)的坐標(biāo);
(3)在線段AB上是否存在點(diǎn)P,過P作x軸的垂線交拋物線于E點(diǎn),使得以P、B、E為頂點(diǎn)的三角形與△BOC相似?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

【答案】分析:(1)首先由直線AC的解析式確定點(diǎn)C的坐標(biāo),在已知點(diǎn)A坐標(biāo)的情況下,利用待定系數(shù)法可確定拋物線的解析式.
(2)點(diǎn)B、C的坐標(biāo)易知,那么OB、OC的倍數(shù)關(guān)系不難求出,那么在△DCO、△DBO中,分別以CO、BO為底進(jìn)行討論,若兩三角形的面積相等,可確定點(diǎn)D到x軸、y軸距離的比例關(guān)系(或邊CO、邊OB上的高的比例關(guān)系),首先根據(jù)這個關(guān)系設(shè)出點(diǎn)D的坐標(biāo),再代入(1)的拋物線中即可確定該點(diǎn)的坐標(biāo).
(3)由于PE⊥x軸,即PE∥OB,顯然有∠BPE=∠CBO,若“以P、B、E為頂點(diǎn)的三角形與△BOC相似”,只需在△BPE中找出一個直角即可,那么分兩種情況討論:
①PB⊥BE,此時直線BE、直線AC的斜率乘積為-1,先確定直線BE的解析式,聯(lián)立拋物線的解析式后可確定點(diǎn)P的坐標(biāo);
②PE⊥BE,由于PE⊥x軸,那么必有BE∥x軸,因此只需將點(diǎn)B的縱坐標(biāo)代入拋物線的解析式中,進(jìn)一步可確定點(diǎn)P的坐標(biāo);
另外,需要注意的是點(diǎn)P在線段AB上,求出結(jié)果后不要忘記根據(jù)這個條件對值進(jìn)行取舍.
解答:解:(1)由直線y=2x+2知:點(diǎn)C(-1,0)、B(0,2);
拋物線y=ax2-2ax+c過點(diǎn)C(-1,0)、A(5,12),有:
,解得
∴拋物線的解析式:y=x2-2x-3.

(2)由(1)知:OB=2、OC=1;
由題意知:S△DBO=S△DCO,則:
×BO×|xD|=×CO×|yD|,即:|yD|=2|xD|
∴可以設(shè)點(diǎn)D的坐標(biāo)為:(x,2x)或(x,-2x)(x<-1或x>3),代入拋物線的解析式中,有:
當(dāng)點(diǎn)D坐標(biāo)為(x,2x)時,有:x2-2x-3=2x;解得:x1=2-(舍),x2=2+;
當(dāng)點(diǎn)D坐標(biāo)為(x,-2x)時,有:x2-2x-3=-2x;解得:x3=(舍),x4=-
∴點(diǎn)D的坐標(biāo)為:(2+,4+2)或(-,2).

(3)∵PE⊥x軸,且BO⊥CO,
∴PE∥BO,即∠CBO=∠BPE;
若以P、B、E為頂點(diǎn)的三角形與△BOC相似,那么:
①PB⊥BE,如圖①;
由于直線BE與直線AC垂直,且過點(diǎn)B(0,2),所以:
直線BE:y=-x+2;
聯(lián)立拋物線的解析式,有:
-x+2=x2-2x-3,解得:x1=、x2=(舍);
將點(diǎn)P橫坐標(biāo)代入直線AC:y=2x+2中,得:y=;
∴P1).
②PE⊥BE,如圖②;
∵PE∥y軸,且PE⊥BE,
∴BE∥x軸,即 點(diǎn)B、E的縱坐標(biāo)相同;
令x2-2x-3=2,解得:x1=1-(舍)、x2=1+
將點(diǎn)P橫坐標(biāo)代入直線AC:y=2x+2中,得:y=4+2
∴P2(1+,4+2).
綜上,存在符合條件的點(diǎn)P,且坐標(biāo)為(,)或(1+,4+2).
點(diǎn)評:該題涉及到利用待定系數(shù)法確定函數(shù)解析式、三角形面積的解法、函數(shù)圖象交點(diǎn)坐標(biāo)的求法以及相似三角形的判定和性質(zhì)等重點(diǎn)知識;(2)題中,能夠由三角形的面積相等得出點(diǎn)D橫縱坐標(biāo)的倍數(shù)關(guān)系是突破題目的關(guān)鍵;(3)題容易漏解,要注意根據(jù)不同情況分類討論.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

16、如圖,已知直線AB和CD相交于點(diǎn)O,∠COE是直角,OF平分∠AOE.
(1)寫出∠AOC與∠BOD的大小關(guān)系:
相等
,判斷的依據(jù)是
等角的補(bǔ)角相等

(2)若∠COF=35°,求∠BOD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

5、如圖,已知直線l1∥l2,AB⊥CD,∠1=30°,則∠2的度數(shù)為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知直線l1y=
2
3
x+
8
3
與直線 l2:y=-2x+16相交于點(diǎn)C,直線l1、l2分別交x軸于A、B兩點(diǎn),矩形DEFG的頂點(diǎn)D、E分別在l1、l2上,頂點(diǎn)F、G都在x軸上,且點(diǎn)G與B點(diǎn)重合,那么S矩形DEFG:S△ABC=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•懷化)如圖,已知直線a∥b,∠1=35°,則∠2=
35°
35°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知直線m∥n,則下列結(jié)論成立的是(  )

查看答案和解析>>

同步練習(xí)冊答案