(1)等腰直角△ABC和等腰直角△CDE的位置如圖所示,連接BE,并延長(zhǎng)交AD于F,試問(wèn)AD與BE之間有什么關(guān)系?證明你的結(jié)論;
(2)若保持其他條件不變,等腰直角△CDE繞C點(diǎn)旋轉(zhuǎn),位置如下圖所示,試問(wèn)AD與BE之間的關(guān)系還存在嗎?若存在,給予證明;若不存在,則說(shuō)明理由.
【答案】分析:(1)、(2)通過(guò)證明△BEC≌△ADC得到AD與BE的數(shù)量關(guān)系與位置關(guān)系.
解答:解:(1)AD⊥BE,AD=BE,
∵等腰直角△ABC和等腰直角△CDE,
∴DC=EC,∠DCA=∠ECB,AC=BC,
∴△BEC≌△ADC,
∴AD=BE,∠DAC=∠EBC,又∠BEC=∠AEF,∠BEC+∠EBC=90°,
∴∠AEF+∠DAC=90°,
∴∠AFB=90°,
∴AD⊥BE.

(2)仍存在.如圖,
∵等腰直角△ABC和等腰直角△CDE,
∴DC=EC,AC=BC,∠DCE=∠ACB,
∴∠DCA=∠ECB,
∴△BEC≌△ADC
∴AD=BE,∠DAC=∠EBC,又∠BOC=∠AOE,∠BOC+∠EBC=90°,
∴∠AOE+∠DAC=90°,
∴AD⊥BE.
點(diǎn)評(píng):本題結(jié)合旋轉(zhuǎn),考查了等腰直角三角形的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、如圖,AB是半圓O的直徑,點(diǎn)M是半徑OA的中點(diǎn),點(diǎn)P在線段AM上運(yùn)動(dòng)(不與點(diǎn)M重合),點(diǎn)Q在半圓O上運(yùn)動(dòng),且總保持PQ=PO,過(guò)點(diǎn)Q作⊙O的切線交BA的延長(zhǎng)線于點(diǎn)C.
(1)當(dāng)∠QPA=60°時(shí),請(qǐng)你對(duì)△QCP的形狀做出猜想,并給予證明;
(2)當(dāng)QP⊥AB時(shí),△QCP的形狀是
等腰直角
三角形;
(3)由(1)、(2)得出的結(jié)論,請(qǐng)進(jìn)一步猜想當(dāng)點(diǎn)P在線段AM上運(yùn)動(dòng)到任何位置時(shí),△QCP一定是
等腰
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠BAC=45度,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點(diǎn)H,且EH=EB.小馬虎在研究時(shí)得到四個(gè)結(jié)論:①∠ABC=45°;②AH=BC;③AE-BE=CH;④△AEC是等腰直角三角形.你認(rèn)為正確的序號(hào)是( 。
A、①②③④B、②③④C、①②③D、②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在等腰直角△ABC中,∠B=90°,將△ABC繞頂點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)60°后得到△AB′C′,則∠BAC′=( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在等腰直角△ABC中,∠C=90°,AB=5
2
,則AC=
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,一等腰直角三角尺GEF的兩條直角邊與正方形ABCD的兩條邊分別重合在一起.現(xiàn)正方形ABCD保持不動(dòng),將三角尺GEF繞斜邊EF的中點(diǎn)O(點(diǎn)O也是BD中點(diǎn))旋轉(zhuǎn).
(1)如圖2的位置,當(dāng)EF與AB相交于點(diǎn)M,GF與BD相交于點(diǎn)N時(shí),通過(guò)觀察或測(cè)量BM,F(xiàn)N的長(zhǎng)度,猜想BM,F(xiàn)N滿足的數(shù)量關(guān)系,并證明你的猜想;
(2)若三角尺GEF旋轉(zhuǎn)到如圖3所示的位置時(shí),線段FE的延長(zhǎng)線與AB的延長(zhǎng)線相交于點(diǎn)M,線段BD的延長(zhǎng)線與GF的延長(zhǎng)線相交于點(diǎn)N,此時(shí),(1)中的猜想還成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
(3)在(2)的條件下,若∠MOB=15°,正方形ABCD的面積為4,求三角形OBM的面積.精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案