如圖,在梯形ABCD中,AD∥BC,∠B=90°,AD=18cm,BC=21cm,點(diǎn)P從點(diǎn)A開始沿AD邊向D以1cm/s的速度移動,點(diǎn)Q從點(diǎn)C開始沿CB邊向B以2cm/s的速度移動,如果P、Q分別從A、C同時出發(fā),設(shè)移動的時間為t(s),求:

(1)t為何值時,四邊形PQCD為平行四邊形;
(2)t為何值時,四邊形ABQP為矩形;
(3)t為何值時,梯形PQCD是等腰梯形。
(1)6s(2)7S(3)8S解析:
解:(1)設(shè)經(jīng)過t S四邊形PQCD為平行四邊形。
由題意,得18-t=2t。解得t=6.
所以當(dāng)t=6s時,四邊形PQCD為平行四邊形。
(2)由題意,得21-2t,解得t=7.
即當(dāng)t=7S時,四邊形ABQP為矩形。
(3)由題意,得2t=18-t+6,解得t=8.
所以當(dāng)t=8S時,梯形PQCD是等腰梯形。
此題主要根據(jù)平行四邊形、矩形、等腰梯形的判定設(shè)未知量,然后求出
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,在梯形ABCD中,AB∥CD,對角線AC、BD交于點(diǎn)O,則S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,AB⊥AD,對角線BD⊥DC.
(1)求證:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,則梯形面積S梯形ABCD=
38.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD為直徑的半圓O切AB于點(diǎn)E,這個梯形的面積為21cm2,周長為20cm,那么半圓O的半徑為(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步練習(xí)冊答案