精英家教網 > 初中數學 > 題目詳情

有這樣一道計算題:
計算(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3)的值,其中x=,y=-1。甲同學把x=錯看成x=-,但計算結果仍正確,你說是怎么一回事?

解:(2x3-3x2y-2xy2)-(x3-2xy2+y3)+(-x3+3x2y-y3
=2x3-3x2y-2xy2-x3+2xy2-y3-x3+3x2y-y3
=-2 y3
此式中沒有含x字母的項,當y=-1時,原式=2與x無關。

解析

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

幾何課本第三冊復習題七中有這樣一道幾何題:以Rt△ABC的直角邊AC為直徑作圓,精英家教網交斜邊AB于點D,過點D作圓的切線.求證:這條切線平分另一條直角邊BC.(不必證明)
現將上述習題改變成如下問題,請你解答:
如圖,以Rt△ABC的直角邊AC為直徑作⊙O,交斜邊AB于點D,E為BC邊的中點,連DE.
(1)判斷DE是否為⊙O的切線,并證明你的結論.
(2)當AD:DB=9:16時,DE=8cm時,求⊙O的半徑R.

查看答案和解析>>

科目:初中數學 來源:同步題 題型:解答題

成書于公元一世紀的我國經典數學著作《九章算術》中有這樣一道名題,就是“引葭赴岸”問題,題目是:
“今有池方一丈,葭生其中央,出水一尺,引葭赴岸,適馬岸齊,問水深,葭長各幾何?”
題意是:有一正方形池塘,邊長為一丈,有棵蘆葦長在它的正中央,高出水面部分有一尺長,把蘆葦拉向岸邊,恰好碰到岸沿,問水深和蘆葦長各是多少?

查看答案和解析>>

科目:初中數學 來源:第3章《直線與圓、圓與圓的位置關系》中考題集(23):3.1 直線與圓的位置關系(解析版) 題型:解答題

幾何課本第三冊復習題七中有這樣一道幾何題:以Rt△ABC的直角邊AC為直徑作圓,交斜邊AB于點D,過點D作圓的切線.求證:這條切線平分另一條直角邊BC.(不必證明)
現將上述習題改變成如下問題,請你解答:
如圖,以Rt△ABC的直角邊AC為直徑作⊙O,交斜邊AB于點D,E為BC邊的中點,連DE.
(1)判斷DE是否為⊙O的切線,并證明你的結論.
(2)當AD:DB=9:16時,DE=8cm時,求⊙O的半徑R.

查看答案和解析>>

科目:初中數學 來源:第5章《中心對稱圖形(二)》中考題集(44):5.5 直線與圓的位置關系(解析版) 題型:解答題

幾何課本第三冊復習題七中有這樣一道幾何題:以Rt△ABC的直角邊AC為直徑作圓,交斜邊AB于點D,過點D作圓的切線.求證:這條切線平分另一條直角邊BC.(不必證明)
現將上述習題改變成如下問題,請你解答:
如圖,以Rt△ABC的直角邊AC為直徑作⊙O,交斜邊AB于點D,E為BC邊的中點,連DE.
(1)判斷DE是否為⊙O的切線,并證明你的結論.
(2)當AD:DB=9:16時,DE=8cm時,求⊙O的半徑R.

查看答案和解析>>

科目:初中數學 來源:第24章《圓》中考題集(44):24.2 點、直線和圓的位置關系(解析版) 題型:解答題

幾何課本第三冊復習題七中有這樣一道幾何題:以Rt△ABC的直角邊AC為直徑作圓,交斜邊AB于點D,過點D作圓的切線.求證:這條切線平分另一條直角邊BC.(不必證明)
現將上述習題改變成如下問題,請你解答:
如圖,以Rt△ABC的直角邊AC為直徑作⊙O,交斜邊AB于點D,E為BC邊的中點,連DE.
(1)判斷DE是否為⊙O的切線,并證明你的結論.
(2)當AD:DB=9:16時,DE=8cm時,求⊙O的半徑R.

查看答案和解析>>

同步練習冊答案