【題目】如圖,隧道的截面由拋物線和長方形構(gòu)成,長方形的長是12m,寬是4m.按照圖中所示的直角坐標系,拋物線最高點D到墻面OB的水平距離為6m時,隧道最高點D距離地面10m.
(1)求該拋物線的函數(shù)關(guān)系式;
(2)一輛貨運汽車載一長方體集裝箱后寬為4m,高為6m,如果隧道內(nèi)設雙向行車道,那么這輛貨車能否安全通過?
(3)在拋物線型拱壁上需要安裝兩排燈,使它們離地面的高度相等,如果燈離地面的高度不超過8m,那么兩排燈的水平距離最小是多少米?
【答案】(1)y=﹣(x﹣6)2+10;(2)這輛貨車能安全通過;(3)4m.
【解析】
(1)設出拋物線的解析式,根據(jù)拋物線頂點坐標,代入解析式;
(2)由于拋物線的對稱軸為直線x=6,而隧道內(nèi)設雙向行車道,車寬為4m,則貨運汽車最外側(cè)與地面OA的交點為(2,0)或(10,0),然后計算自變量為2或10的函數(shù)值,再把函數(shù)值與6進行大小比較即可判斷;
(3)拋物線開口向下,函數(shù)值越大,對稱點之間的距離越小,于是計算函數(shù)值為8所對應的自變量的值即可得到兩排燈的水平距離最小值.
解:(1)根據(jù)題意,該拋物線的頂點坐標為(6,10),C(0,4),
設拋物線解析式為:y=a(x﹣6)2+10,
將點C(0,4)代入,得:36a+10=4,
解得:a=﹣,
故該拋物線解析式為:y=﹣(x﹣6)2+10;
(2)由題意得貨運汽車最外側(cè)與地面OA的交點為(2,0)或(10,0),
當x=2或x=10時,y=>6,
所以這輛貨車能安全通過;
(3)令y=8,則﹣(x﹣6)2+10=8,解得x1=6+2,x2=6﹣2,
則x1﹣x2=4 ,
所以兩排燈的水平距離最小是4m.
科目:初中數(shù)學 來源: 題型:
【題目】已知:拋物線y=-+bx+c經(jīng)過A(-1,0)、B(5,0)兩點,頂點為P.
求:(1)求b,c的值;
(2)求△ABP的面積;
(3)若點C(,)和點D(,)在該拋物線上,則當時,請寫出與的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(感知)如圖①,在四邊形ABCD中,點P在邊AB上(點P不與點A、B重合),∠A=∠B=∠DPC=90°.易證:△DAP∽△PBC(不要求證明).
(探究)如圖②,在四邊形ABCD中,點P在邊AB上(點P不與點A、B重合),∠A=∠B=∠DPC.
(1)求證:△DAP~△PBC.
(2)若PD=5,PC=10,BC=9,求AP的長.
(應用)如圖③,在△ABC中,AC=BC=4,AB=6,點P在邊AB上(點P不與點A、B重合),連結(jié)CP,作∠CPE=∠A,PE與邊BC交于點E.當CE=3EB時,求AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】列方程解應用題:
某玩具廠生產(chǎn)一種玩具,按照控制固定成本降價促銷的原則,使生產(chǎn)的玩具能夠及時售出,據(jù)市場調(diào)查:每個玩具按元銷售時,每天可銷售個;若銷售單價每降低元,每天可多售出個.已知每個玩具的固定成本為元,問這種玩具的銷售單價為多少元時,廠家每天可獲利潤元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示.
(1)確定二次函數(shù)的解析式;
(2)若方程ax2+bx+c=k有兩個不相等的實數(shù)根,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c(a≠0)的頂點坐標為Q(2,﹣1),且與y軸交于點C(0,3),與x軸交于A、B兩點(點A在點B的右側(cè)),點P是拋物線上的一動點,從點C沿拋物線向點A運動(點P與A不重合),過點P作PD∥y軸,交AC于點 D.
(1)求該拋物線的函數(shù)關(guān)系式及A、B兩點的坐標;
(2)求點P在運動的過程中,線段PD的最大值;
(3)若點P與點Q重合,點E在x軸上,點F在拋物線上,問是否存在以A,P,E,F(xiàn)為頂點的平行四邊形?若存在,直接寫出點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(本小題滿分12分)
已知:把Rt△ABC和Rt△DEF按如圖(1)擺放(點C與點E重合),點B、C(E)、F在同一條直線上.∠ACB = ∠EDF = 90°,∠DEF = 45°,AC = 8 cm,BC = 6 cm,EF = 9 cm.
如圖(2),△DEF從圖(1)的位置出發(fā),以1 cm/s的速度沿CB向△ABC勻速移動,在△DEF移動的同時,點P從△ABC的頂點B出發(fā),以2 cm/s的速度沿BA向點A勻速移動.當△DEF的頂點D移動到AC邊上時,△DEF停止移動,點P也隨之停止移動.DE與AC相交于點Q,連接PQ,設移動時間為t(s)(0<t<4.5).
解答下列問題:
(1)當t為何值時,點A在線段PQ的垂直平分線上?
(2)連接PE,設四邊形APEC的面積為y(cm2),求y與t之間的函數(shù)關(guān)系式;是否存在某一時刻t,使面積y最。咳舸嬖,求出y的最小值;若不存在,說明理由.
(3)是否存在某一時刻t,使P、Q、F三點在同一條直線上?若存在,求出此時t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠B=60°,BC=6,E為BC中點,F是AB上一點,G為AD上一點,且BF=2,∠FEG=60°,EG交AC于點H,下列結(jié)論:①△BEF∽△CHE;②AG=1;③EH=;④S△BEF=3S△AGH;正確的是______.(填序號即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com