“數(shù)學迷”小楠通過從“特殊到一般”的過程,對倍角三角形(一個內(nèi)角是另一個內(nèi)角的2倍的三角形)進行研究.得出結(jié)論:如圖1,在△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,如果∠A=2∠B,那么a2-b2=bc.
下面給出小楠對其中一種特殊情形的一種證明方法.
已知:如圖2,在△ABC中,∠A=90°,∠B=45°.
求證:a2-b2=bc.
證明:如圖2,延長CA到D,使得AD=AB.
∴∠D=∠ABD,
∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°
∴∠D=45°,∵∠ABC=45°,
∴∠D=∠ABC,又∠C=∠C
∴△ABC∽△BCD
數(shù)學公式,即數(shù)學公式
∴a2-b2=bc
根據(jù)上述材料提供的信息,請你完成下列情形的證明(用不同于材料中的方法也可以):
已知:如圖1,在△ABC中,∠A=2∠B.
求證:a2-b2=bc.

證明:延長CA到D,使得AD=AB,連接BD.
∴∠D=∠ABD,
∵∠CAB=∠D+∠ABD=2∠D,
∵∠CAB=2∠ABC,
∴∠D=∠ABC,又∠C=∠C,
∴△ABC∽△BDC,
,即,
∴a2-b2=bc.
分析:首先延長CA到D,使得AD=AB,得出∠D=∠ABC,進而得出△ABC∽△BDC,進而利用相似三角形的性質(zhì)得出答案.
點評:此題主要考查了相似三角形的判定與性質(zhì),正確作出輔助線得出△ABC∽△BDC是解題關(guān)鍵.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2013•徐匯區(qū)一模)“數(shù)學迷”小楠通過從“特殊到一般”的過程,對倍角三角形(一個內(nèi)角是另一個內(nèi)角的2倍的三角形)進行研究.得出結(jié)論:如圖1,在△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,如果∠A=2∠B,那么a2-b2=bc.
下面給出小楠對其中一種特殊情形的一種證明方法.
已知:如圖2,在△ABC中,∠A=90°,∠B=45°.
求證:a2-b2=bc.
證明:如圖2,延長CA到D,使得AD=AB.
∴∠D=∠ABD,
∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°
∴∠D=45°,∵∠ABC=45°,
∴∠D=∠ABC,又∠C=∠C
∴△ABC∽△BCD
BC
CD
=
AC
BC
,即
a
b+c
=
b
a

∴a2-b2=bc
根據(jù)上述材料提供的信息,請你完成下列情形的證明(用不同于材料中的方法也可以):
已知:如圖1,在△ABC中,∠A=2∠B.
求證:a2-b2=bc.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年上海市徐匯區(qū)中考數(shù)學一模試卷(解析版) 題型:解答題

“數(shù)學迷”小楠通過從“特殊到一般”的過程,對倍角三角形(一個內(nèi)角是另一個內(nèi)角的2倍的三角形)進行研究.得出結(jié)論:如圖1,在△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,如果∠A=2∠B,那么a2-b2=bc.
下面給出小楠對其中一種特殊情形的一種證明方法.
已知:如圖2,在△ABC中,∠A=90°,∠B=45°.
求證:a2-b2=bc.
證明:如圖2,延長CA到D,使得AD=AB.
∴∠D=∠ABD,
∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°
∴∠D=45°,∵∠ABC=45°,
∴∠D=∠ABC,又∠C=∠C
∴△ABC∽△BCD
,即
∴a2-b2=bc
根據(jù)上述材料提供的信息,請你完成下列情形的證明(用不同于材料中的方法也可以):
已知:如圖1,在△ABC中,∠A=2∠B.
求證:a2-b2=bc.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年廣東省惠州市中考數(shù)學模擬試卷(解析版) 題型:解答題

“數(shù)學迷”小楠通過從“特殊到一般”的過程,對倍角三角形(一個內(nèi)角是另一個內(nèi)角的2倍的三角形)進行研究.得出結(jié)論:如圖1,在△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,如果∠A=2∠B,那么a2-b2=bc.
下面給出小楠對其中一種特殊情形的一種證明方法.
已知:如圖2,在△ABC中,∠A=90°,∠B=45°.
求證:a2-b2=bc.
證明:如圖2,延長CA到D,使得AD=AB.
∴∠D=∠ABD,
∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°
∴∠D=45°,∵∠ABC=45°,
∴∠D=∠ABC,又∠C=∠C
∴△ABC∽△BCD
,即
∴a2-b2=bc
根據(jù)上述材料提供的信息,請你完成下列情形的證明(用不同于材料中的方法也可以):
已知:如圖1,在△ABC中,∠A=2∠B.
求證:a2-b2=bc.

查看答案和解析>>

科目:初中數(shù)學 來源:2013年安徽省中考數(shù)學模擬試卷(十七)(解析版) 題型:解答題

“數(shù)學迷”小楠通過從“特殊到一般”的過程,對倍角三角形(一個內(nèi)角是另一個內(nèi)角的2倍的三角形)進行研究.得出結(jié)論:如圖1,在△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,如果∠A=2∠B,那么a2-b2=bc.
下面給出小楠對其中一種特殊情形的一種證明方法.
已知:如圖2,在△ABC中,∠A=90°,∠B=45°.
求證:a2-b2=bc.
證明:如圖2,延長CA到D,使得AD=AB.
∴∠D=∠ABD,
∵∠CAB=∠D+∠ABD=2∠D,∠CAB=90°
∴∠D=45°,∵∠ABC=45°,
∴∠D=∠ABC,又∠C=∠C
∴△ABC∽△BCD
,即
∴a2-b2=bc
根據(jù)上述材料提供的信息,請你完成下列情形的證明(用不同于材料中的方法也可以):
已知:如圖1,在△ABC中,∠A=2∠B.
求證:a2-b2=bc.

查看答案和解析>>

同步練習冊答案