有下列結(jié)論:(1)平分弦的直徑垂直于弦;(2)圓周角的度數(shù)等于圓心角的一半;(3)等弧所對的圓周角相等;(4)經(jīng)過三點一定可以作一個圓;(5)三角形的外心到三邊的距離相等;(6)垂直于半徑的直線是圓的切線.其中正確的個數(shù)為( 。
A. 1個 B. 2個 C. 3個 D. 4個
科目:初中數(shù)學 來源: 題型:
k |
x |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:013
如果平面上M,N兩點的距離是17厘米,若在該平面上有一點P和M,N兩點的距離之和等于25厘米,那么下列結(jié)論正確的是
[ ]
A.P點在線段MN上
B.P點在直線MN外
C.P點在直線MN上
D.P點可能在直線MN外,也可能在直線MN上
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:閱讀理解
閱讀下列材料并解答。
例 平面上有n個點(n≥2)且任意三個點不在同一條直線上,過這些點作直線,一共能作出多少條不同的直線?
(1)分析:當僅有兩個點時,可連成1條直線;當有3個點時,可連成3條直線;當有4個點時,可連成6條直線;當有5個點時,可連成10條直線……
(2)歸納:考察點的個數(shù)和可連成直線的條數(shù)發(fā)現(xiàn):如下表
點的個數(shù) | 可作出直線條數(shù) |
2 | 1= |
3 | 3= |
4 | 6= |
5 | 10= |
…… | …… |
n |
|
(3)推理:平面上有n個點,兩點確定一條直線。取第一個點A有n種取法,取第二個點B有(n-1)種取法,所以一共可連成n(n-1)條直線,但AB與BA是同一條直線,
故應除以2;即
(4)結(jié)論:
試探究以下幾個問題:
平面上有n個點(n≥3),任意三個點不在同一條直線上,過任意三個點作三角形,一共能作出多少不同的三角形?
(1)分析:
當僅有3個點時,可作出 個三角形;
當僅有4個點時,可作出 個三角形;
當僅有5個點時,可作出 個三角形;
……
(2)歸納:考察點的個數(shù)n和可作出的三角形的個數(shù),發(fā)現(xiàn):(填下表)
點的個數(shù) | 可連成三角形個數(shù) |
3 | |
4 | |
5 | |
…… | |
n |
( 3 ) 推理:
(4)結(jié)論:
查看答案和解析>>
科目:初中數(shù)學 來源:同步題 題型:單選題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com