【題目】如圖,已知在平面直角坐標(biāo)系中有兩點(diǎn)A(0,1),B(,0),動點(diǎn)P在線段AB上運(yùn)動,過點(diǎn)P作y軸的垂線,垂足為點(diǎn)M,作x軸的垂線,垂足為點(diǎn)N,連接MN,則線段MN的最小值為( )
A. 1B. C. D.
【答案】D
【解析】
過點(diǎn)P向兩坐標(biāo)軸做垂線與兩坐標(biāo)軸轉(zhuǎn)成的四邊形是矩形,根據(jù)矩形的對角線相等,只要求出對角線OP的最小值,即可求得MN的最小值,由于P點(diǎn)是AB上的點(diǎn),當(dāng)OP⊥AB時,OP最短,由此求得OP的長,即可解決問題.
連接OP,
A(0,1),B(,0)
∴OA=1,OB=
∴AB= =2
∵PM⊥AO,PN⊥OB
∴∠PMO=∠PNO=90°
又∵∠ABO=90°
∴∠AOB=∠PMO=∠PNO=90°
∴四邊形PMON是矩形
∴MN=OP
∴當(dāng)OP最小時,MN最小
當(dāng)OP⊥AB時,OP最小
此時有ABOP=OAOB
∴ABOP=OAOB
∴2OP=1×
∴OP=.
故選D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,△AEF的頂點(diǎn)E,F分別在BC、CD邊上,高AG與正方形的邊長相等,連BD分別交AE、AF于點(diǎn)M、N,若EG=4,GF=6,BM=,則MN的長為______
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)(操作發(fā)現(xiàn)):如圖一,在矩形ABCD中,E是BC的中點(diǎn),將△ABE沿AE折疊后得到△AFE,點(diǎn)F在矩形ABCD內(nèi)部,延長AF交CD于點(diǎn)G.猜想線段GF與GC的數(shù)量關(guān)系是 .
(2)(類比探究):如圖二,將(1)中的矩形ABCD改為平行四邊形,其它條件不變,(1)中的結(jié)論是否仍然成立?請說明理由.
(3)(應(yīng)用):如圖三,將(1)中的矩形ABCD改為正方形,邊長AB=4,其它條件不變,求線段GC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l: 與x軸.y軸交于B,A兩點(diǎn),點(diǎn)D,C分別為線段AB,OB的中點(diǎn),連結(jié)CD,如圖,將△DCB繞點(diǎn)B按順時針方向旋轉(zhuǎn)角,如圖.
(1)連結(jié)OC,AD,求證∽;
(2)當(dāng)0°<<180°時,若△DCB旋轉(zhuǎn)至A,C,D三點(diǎn)共線時,求線段OD的長;
(3)試探索:180°<<360°時,是否還有可能存在A,C,D三點(diǎn)共線的情況,若存在,求出此直線的表達(dá)式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑的圓交AC于點(diǎn)D,交BC于點(diǎn)E,延長AE至點(diǎn)F,使EF=AE,連接FB,FC.
(1)求證:四邊形ABFC是菱形;
(2)若AD=6,BE=2,求四邊形ABFC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,AB=3cm,AD=4cm,EF經(jīng)過對角線BD的中點(diǎn)O,分別交AD,BC于點(diǎn)E,F.
(1)求證:△BOF≌△DOE;
(2)當(dāng)EF⊥BD時,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線過點(diǎn),,與軸相交于點(diǎn).
(1)求拋物線的解析式;
(2)在軸正半軸上存在點(diǎn),使得是等腰三角形,請求出點(diǎn)的坐標(biāo);
(3)如圖2,點(diǎn)是直線上方拋物線上的一個動點(diǎn).過點(diǎn)作于點(diǎn),是否存在點(diǎn),使得中的某個角恰好等于的2倍?若存在,請求出點(diǎn)的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直線y=2x+b分別交x,y軸于點(diǎn)A、C,拋物線y=ax2+x+4經(jīng)過A、C兩點(diǎn),交x軸于另外一點(diǎn)B.
(1)求拋物線的解析式;
(2)點(diǎn)P在第一象限內(nèi)拋物線上,連接PB、PC,作平行四邊形PBDC,DE⊥y軸于點(diǎn)E,設(shè)點(diǎn)P 的橫坐標(biāo)為t,線段DE的長度為d,求d與t之間的函數(shù)關(guān)系式.
(3)在(2)的條件下,延長BD交直線AC與點(diǎn)F,連接OF,若∠AFO=∠BFO,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=a(x+1)(x﹣3)與x軸交于A、B兩點(diǎn),拋物線與x軸圍成的封閉區(qū)域(不包含邊界),僅有4個整數(shù)點(diǎn)時(整數(shù)點(diǎn)就是橫縱坐標(biāo)均為整數(shù)的點(diǎn)),則a的取值范圍_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com