【題目】為響應(yīng)國(guó)家的“節(jié)能減排”政策,某廠家開發(fā)了一種新型的電動(dòng)車,如圖,它的大燈A射出的光線AB、AC與地面MN的夾角分別為22°和31°,AT⊥MN,垂足為T,大燈照亮地面的寬度BC的長(zhǎng)為m.
(1)求BT的長(zhǎng)(不考慮其他因素).
(2)一般正常人從發(fā)現(xiàn)危險(xiǎn)到做出剎車動(dòng)作的反應(yīng)時(shí)間是0.2s,從發(fā)現(xiàn)危險(xiǎn)到電動(dòng)車完全停下所行駛的距離叫做最小安全距離.某人以20km/h的速度駕駛該車,從做出剎車動(dòng)作到電動(dòng)車停止的剎車距離是,請(qǐng)判斷該車大燈的設(shè)計(jì)是否能滿足最小安全距離的要求(大燈與前輪前端間水平距離忽略不計(jì)),并說明理由.
(參考數(shù)據(jù):sin22°≈,tan22°≈,sin31°≈,tan31°≈)
【答案】(1)BT=;(2)該車大燈的設(shè)計(jì)不能滿足最小安全距離的要求,理由見解析.
【解析】
試題分析:(1)在直角△ACT中,根據(jù)三角函數(shù)的定義,若AT=3x,則CT=5x,在直角△ABT中利用三角函數(shù)即可列方程求解;
(2)求出正常人作出反應(yīng)過程中電動(dòng)車行駛的路程,加上剎車距離,然后與BT的長(zhǎng)進(jìn)行比較即可.
解:(1)根據(jù)題意及圖知:∠ACT=31°,∠ABT=22°
∵AT⊥MN
∴∠ATC=90°
在Rt△ACT中,∠ACT=31°
∴tan31°=
可設(shè)AT=3x,則CT=5x
在Rt△ABT中,∠ABT=22°
∴tan22°=
即:
解得:
∴,
∴;
(2),
,
∴該車大燈的設(shè)計(jì)不能滿足最小安全距離的要求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.
以下結(jié)論:①AD∥BC; ②∠ACB=2∠ADB; ③∠ADC=90°-∠ABD; ④BD平分∠ADC;⑤∠BDC=∠BAC.其中正確的結(jié)論有____________。(填寫正確的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列運(yùn)算正確的是( 。
A. 5a2﹣3a2=2 B. 2x2+3x2=5x4 C. 3a+2b=5ab D. 7ab﹣6ba=ab
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以△ABC的一邊AB為直徑的半圓與其它兩邊AC,BC的交點(diǎn)分別為D、E,且=.
(1)試判斷△ABC的形狀,并說明理由.
(2)已知半圓的半徑為5,BC=12,求sin∠ABD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形具有而菱形不一定具有的性質(zhì)是( )
A. 對(duì)角線相等B. 對(duì)角線互相垂直平分
C. 對(duì)角線平分一組對(duì)角D. 四條邊相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線與軸、軸分別相交于點(diǎn)A和B.
(1)直接寫出坐標(biāo):點(diǎn)A ,點(diǎn)B ;
(2)以線段AB為一邊在第一象限內(nèi)作□ABCD,其頂點(diǎn)D(, )在雙曲線 (>)上.
①求證:四邊形ABCD是正方形;
②試探索:將正方形ABCD沿軸向左平移多少個(gè)單位長(zhǎng)度時(shí),點(diǎn)C恰好落在雙曲線 (>)上.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的周長(zhǎng)為8m,高AE的長(zhǎng)為cm,則對(duì)角線BD的長(zhǎng)為( )
A.2cm B.3cm C.cm D.2cm
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com