(1)因?yàn)閽佄锞與x軸交于點(diǎn)A(-1,0)、B(3,0)兩點(diǎn),
設(shè)拋物線的函數(shù)關(guān)系式為:y=a(x+1)(x-3),
∵拋物線與y軸交于點(diǎn)C(0,-3),
∴-3=a(0+1)(0-3),
∴a=1,
所以,拋物線的函數(shù)關(guān)系式為:y=x
2-2x-3,(2分)
又∵y=(x-1)
2-4,
因此,拋物線的頂點(diǎn)坐標(biāo)為(1,-4);(3分)
(2)連接EM,∵EA、ED是⊙M的兩條切線,
∴EA=ED,EA⊥AM,ED⊥MD,
∴△EAM≌△EDM(HL),
又∵四邊形EAMD的面積為
4,
∴S
△EAM=2
,
∴
AM•AE=2
,
又∵AM=2,
∴AE=2
,
因此,點(diǎn)E的坐標(biāo)為E
1(-1,2
)或E
2(-1,-2
),(5分)
當(dāng)E點(diǎn)在第二象限時(shí),切點(diǎn)D在第一象限,
在直角三角形EAM中,tan∠EMA=
=
=
,
∴∠EMA=60°,
∴∠DMB=60°,
過(guò)切點(diǎn)D作DF⊥AB,垂足為點(diǎn)F,
∴MF=1,DF=
,
因此,切點(diǎn)D的坐標(biāo)為(2,
),(6分)
設(shè)直線PD的函數(shù)關(guān)系式為y=kx+b,
將E(-1,2
),D(2,
)的坐標(biāo)代入得
,
解之,得:
,
所以,直線PD的函數(shù)關(guān)系式為
y=-x+,(7分)
當(dāng)E點(diǎn)在第三象限時(shí),切點(diǎn)D在第四象限,
同理可求:切點(diǎn)D坐標(biāo)為(2,-
),
直線PD的函數(shù)關(guān)系式為
y=x-,
因此,直線PD的函數(shù)關(guān)系式為
y=-x+或
y=x-;(8分)
(3)若四邊形EAMD的面積等于△DAN的面積,
又∵S
四邊形EAMD=2S
△EAM,S
△DAN=2S
△AMD,
∴S
△AMD=S
△EAM,
∴E、D兩點(diǎn)到x軸的距離相等,
∵PD與⊙M相切,
∴點(diǎn)D與點(diǎn)E在x軸同側(cè),
∴切線PD與x軸平行,
此時(shí)切線PD的函數(shù)關(guān)系式為y=2或y=-2,(9分)
當(dāng)y=2時(shí),由y=x
2-2x-3得,x=1±
;
當(dāng)y=-2時(shí),由y=x
2-2x-3得,x=1±
,(11分)
故滿足條件的點(diǎn)P的位置有4個(gè),分別是P
1(1+
,2)、P
2(1-
,2)、P
3(1+
,-2)、P
4(1-
,-2).(12分)
說(shuō)明:本參考答案給出了一種解題方法,其它正確方法應(yīng)參考本標(biāo)準(zhǔn)給出相應(yīng)分?jǐn)?shù).