如圖,在△ABC中,∠A=90°,AB=AC,∠ABC的平分線BD交AC于D,CE⊥BD的延長線于點E.求證:

【答案】分析:延長CE、BA相交于點F.可以證明Rt△ABD≌Rt△ACF,再證明△BCE≌△BFE得到CE=EF,就可以得出結(jié)論.
解答:解:延長CE、BA相交于點F.
∵∠EBF+∠F=90°,∠ACF+∠F=90°
∴∠EBF=∠ACF.
在△ABD和△ACF中
∴△ABD≌△ACF(ASA)
∴BD=CF
在△BCE和△BFE中
,
∴△BCE≌△BFE(ASA)
∴CE=EF

點評:本題主要考查了全等三角形的證明,能夠想到延長CE、BA相交于點F,構(gòu)造全等三角形是解決本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案