22、已知,如圖,在△ABC和△EDB中,∠ACB=∠EBD=90°,點E在BC上,DE⊥AB交AB于F,且AB=ED.求證:DB=BC.
分析:由題意得∠D+∠DEB=90°,∠ABC+∠DEB=90°,則∠ABC=∠D,則△ABC≌△EBD,從而得出DB=BC.
解答:證明:∵∠EBD=90°,DE⊥AB
∴∠D+∠DEB=90°,∠ABC+∠DEB=90°,(1分)
∴∠ABC=∠D.(1分)
在△ABC和△EBD中
∵∠ABC=∠D,∠ACB=∠EBD,AB=ED,
∴△ACB≌△EBD.(3分)
∴DB=BC.(1分)
點評:本題考查了全等三角形的判定和性質(zhì),本題是根據(jù)AAS證明兩個三角形全等.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

34、已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•啟東市一模)已知,如圖,在Rt△ABC中,∠C=90°,∠BAC的角平分線AD交BC邊于D.
(1)以AB邊上一點O為圓心,過A,D兩點作⊙O(不寫作法,保留作圖痕跡),再判斷直線BC與⊙O的位置關(guān)系,并說明理由;
(2)若(1)中的⊙O與AB邊的另一個交點為E,半徑為2,AB=6,求線段AD、AE與劣弧DE所圍成的圖形面積.(結(jié)果保留根號和π)《根據(jù)2011江蘇揚州市中考試題改編》

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,在△ABC中,∠C=120°,邊AC的垂直平分線DE與AC、AB分別交于點D和點E.
(1)作出邊AC的垂直平分線DE;
(2)當AE=BC時,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

已知:如圖,在AB、AC上各取一點E、D,使AE=AD,連接BD,CE,BD與CE交于O,連接AO,∠1=∠2,
求證:∠B=∠C.

查看答案和解析>>

科目:初中數(shù)學 來源:專項題 題型:證明題

已知:如圖,在AB、AC上各取一點,E、D,使AE=AD,連結(jié)BD,CE,BD與CE交于O,連結(jié)AO,
           ∠1=∠2;
求證:∠B=∠C

查看答案和解析>>

同步練習冊答案