一個(gè)水槽有進(jìn)水管和出水管各一個(gè),進(jìn)水管每分鐘進(jìn)水a(chǎn)升,出水管每分鐘出水b升.水槽在開始5分鐘內(nèi)只進(jìn)水不出水,隨后15分鐘內(nèi)既進(jìn)水又出水,得到時(shí)間x(分)與水槽內(nèi)的水量y(升)之間的函數(shù)關(guān)系(如圖所示).
(1)求a、b的值;
(2)如果在20分鐘之后只出水不進(jìn)水,求這段時(shí)間內(nèi)y關(guān)于x的函數(shù)解析式及定義域.

解:(1)由圖象得知:水槽原有水5升,前5分鐘只進(jìn)水不出水,第5分鐘時(shí)水槽實(shí)際存水20升.
水槽每分鐘進(jìn)水a(chǎn)升,
于是可得方程:5a+5=20.
解得a=3.
按照每分鐘進(jìn)水3升的速度,15分鐘應(yīng)該進(jìn)水45升,加上第20分鐘時(shí)水槽內(nèi)原有的20升水,水槽內(nèi)應(yīng)該存水65升.
實(shí)際上,由圖象給出的信息可以得知:第20分鐘時(shí),水槽內(nèi)的實(shí)際存水只有35升,
因此15分鐘的時(shí)間內(nèi)實(shí)際出水量為:65-35=30(升).
依據(jù)題意,得方程:15b=30.
解得 b=2.

(2)按照每分鐘出水2升的速度,將水槽內(nèi)存有的35升水完全排出,需要17.5分鐘.
因此,在第37.5分鐘時(shí),水槽內(nèi)的水可以完全排除.
設(shè)第20分鐘后(只出水不進(jìn)水),y關(guān)于x的函數(shù)解析式為y=kx+b.
將(20,35)、(37.5,0)代入y=kx+b,
得:
解得:,
則y關(guān)于x的函數(shù)解析式為:y=-2x+75(20≤x≤37.5).
分析:(1)根據(jù)圖象上點(diǎn)的坐標(biāo),可以得出水槽內(nèi)水量與時(shí)間的關(guān)系,進(jìn)而得出a,b的值;
(2)根據(jù)在20分鐘之后只出水不進(jìn)水,得出圖象上點(diǎn)的坐標(biāo),進(jìn)而利用待定系數(shù)法求出即可.
點(diǎn)評(píng):此題主要考查了一次函數(shù)的應(yīng)用以及待定系數(shù)法求一次函數(shù)解析式,正確根據(jù)圖象得出正確信息是解題關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

一個(gè)水槽有進(jìn)水管和出水管各一個(gè),進(jìn)水管每分鐘進(jìn)水a(chǎn)升,出水管每分鐘出水b升.水槽在開始5分鐘內(nèi)只進(jìn)水不出水,隨后15分鐘內(nèi)既進(jìn)水又出水,得到時(shí)間x(分)與水槽內(nèi)的水量y(升)之間的函數(shù)關(guān)系(如圖所示).
(1)求a、b的值;
(2)如果在20分鐘之后只出水不進(jìn)水,求這段時(shí)間內(nèi)y關(guān)于x的函數(shù)解析式及定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案