在同一坐標(biāo)平面內(nèi),下列函數(shù)圖象中不能由函數(shù)y=2x2的圖象經(jīng)過(guò)平移變換,軸對(duì)稱變換得到的是


  1. A.
    y=2(x+1)2-1
  2. B.
    y=2x2
  3. C.
    y=-2x2-1
  4. D.
    y=數(shù)學(xué)公式x2-1
D
分析:拋物線的開口方向與a的正負(fù)有關(guān),拋物線開口的大小與a的絕對(duì)值大小有關(guān).
解答:由于拋物線的形狀由二次項(xiàng)的系數(shù)a決定,所以兩個(gè)函數(shù)表達(dá)式中的a要相同或互為相反數(shù)才可以通過(guò)平移變換、軸對(duì)稱變換得到.
故選D.
點(diǎn)評(píng):本題考查了二次函數(shù)的圖象與幾何變換的知識(shí).同時(shí)要求同學(xué)們要熟悉二次函數(shù)的圖象的移動(dòng)規(guī)律.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某旅游勝地欲開發(fā)一座景觀山.從山的側(cè)面進(jìn)行勘測(cè),迎面山坡線ABC由同一平面內(nèi)的兩段拋物線組成,其中AB所在的拋物線以A為頂點(diǎn)、開口向下,BC所在的拋物線以C為頂點(diǎn)、開口向上.以過(guò)山腳(點(diǎn)C)的水平線為x軸、過(guò)山頂(點(diǎn)A)的鉛垂線為y軸建立平面直角坐標(biāo)系如圖(單位:百米).已知AB所在拋物線的解析式為y=-
1
4
x2+8,BC所在拋物線的解析式為y=
1
4
(x-8)2,且已知B(m,4).
(1)設(shè)P(x,y)是山坡線AB上任意一點(diǎn),用y表示x,并求點(diǎn)B的坐標(biāo);
(2)從山頂開始、沿迎面山坡往山下鋪設(shè)觀景臺(tái)階.這種臺(tái)階每級(jí)的高度為20厘米,長(zhǎng)度因坡度的大小而定,但不得小于20厘米,每級(jí)臺(tái)階的兩端點(diǎn)在坡面上(見(jiàn)圖).
①分別求出前三級(jí)臺(tái)階的長(zhǎng)度(精確到厘米);
②這種臺(tái)階不能一直鋪到山腳,為什么?
(3)在山坡上的700米高度(點(diǎn)D)處恰好有一小塊平地,可以用來(lái)建造索道站.索道的起點(diǎn)選擇在山腳水平線上的點(diǎn)E處,OE=1600(米).假設(shè)索道DE可近似地看成一段以E為頂點(diǎn)、開口向上的拋物線,解析式為y=
1
28
(x-16)2精英家教網(wǎng)試求索道的最大懸空高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在同一平面直角坐標(biāo)系內(nèi),將函數(shù)y=2x2+4x+1的圖象沿x軸方向向右平移2個(gè)單位長(zhǎng)度后再沿y軸向下平移1個(gè)單位長(zhǎng)度,得到圖象的頂點(diǎn)坐標(biāo)是
(1,-2)
(1,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•德陽(yáng))在同一平面直角坐標(biāo)系內(nèi),將函數(shù)y=2x2+4x+1的圖象沿x軸方向向右平移2個(gè)單位長(zhǎng)度后再沿y軸向下平移1個(gè)單位長(zhǎng)度,得到圖象的頂點(diǎn)坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012年初中畢業(yè)升學(xué)考試(四川德陽(yáng)卷)數(shù)學(xué)(解析版) 題型:選擇題

在同一平面直角坐標(biāo)系內(nèi),將函數(shù)的圖象沿x軸方向向右平移2個(gè)單位長(zhǎng)度后再沿y軸向下平移1個(gè)單位長(zhǎng)度,得到圖象的頂點(diǎn)坐標(biāo)是【    】

A.(,1)    B.(1,)     C.(2,)     D.(1,

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年浙江省嘉興市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•嘉興)某旅游勝地欲開發(fā)一座景觀山.從山的側(cè)面進(jìn)行勘測(cè),迎面山坡線ABC由同一平面內(nèi)的兩段拋物線組成,其中AB所在的拋物線以A為頂點(diǎn)、開口向下,BC所在的拋物線以C為頂點(diǎn)、開口向上.以過(guò)山腳(點(diǎn)C)的水平線為x軸、過(guò)山頂(點(diǎn)A)的鉛垂線為y軸建立平面直角坐標(biāo)系如圖(單位:百米).已知AB所在拋物線的解析式為y=-x2+8,BC所在拋物線的解析式為y=(x-8)2,且已知B(m,4).
(1)設(shè)P(x,y)是山坡線AB上任意一點(diǎn),用y表示x,并求點(diǎn)B的坐標(biāo);
(2)從山頂開始、沿迎面山坡往山下鋪設(shè)觀景臺(tái)階.這種臺(tái)階每級(jí)的高度為20厘米,長(zhǎng)度因坡度的大小而定,但不得小于20厘米,每級(jí)臺(tái)階的兩端點(diǎn)在坡面上(見(jiàn)圖).
①分別求出前三級(jí)臺(tái)階的長(zhǎng)度(精確到厘米);
②這種臺(tái)階不能一直鋪到山腳,為什么?
(3)在山坡上的700米高度(點(diǎn)D)處恰好有一小塊平地,可以用來(lái)建造索道站.索道的起點(diǎn)選擇在山腳水平線上的點(diǎn)E處,OE=1600(米).假設(shè)索道DE可近似地看成一段以E為頂點(diǎn)、開口向上的拋物線,解析式為y=(x-16)2.試求索道的最大懸空高度.

查看答案和解析>>

同步練習(xí)冊(cè)答案