1.  如圖,已知,點(diǎn)邊上,四邊形是矩形.請你只用無刻度的直尺在圖中畫出的平分線(請保留畫圖痕跡).

 

【答案】

【解析】略

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2012•香洲區(qū)一模)如圖,已知正方形ABCD的邊長為28,動點(diǎn)P從A開始在線段AD上以每秒3個(gè)單位長度的速度向點(diǎn)D運(yùn)動(點(diǎn)P到達(dá)點(diǎn)D時(shí)終止運(yùn)動),動直線EF從AD開始以每秒1個(gè)單位長度的速度向下平行移動(即EF∥AD),并且分別與DC、AC交于E、F兩點(diǎn),連接FP,設(shè)動點(diǎn)P與動直線EF同時(shí)出發(fā),運(yùn)動時(shí)間為t 秒.
(1)t為何值時(shí),梯形DPFE的面積最大?最大面積是多少?
(2)當(dāng)梯形DPFE的面積等于△APF的面積時(shí),求線段PF的長.
(3)△DPF能否為一個(gè)等腰三角形?若能,試求出所有的t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的邊長為3,如果將線段AC繞點(diǎn)A旋轉(zhuǎn)后,點(diǎn)C落在BA的延長線上的C′點(diǎn)處,那么sin∠ADC′=
6
3
6
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:△ABC為邊長是4
3
的等邊三角形,四邊形DEFG為邊長是6的正方形.現(xiàn)將等邊△ABC和正方形DEFG按如圖1的方式擺放,使點(diǎn)C與點(diǎn)E重合,點(diǎn)B、C(E)、F在同一條直線上,△ABC從圖1的位置出發(fā),以每秒1個(gè)單位長度的速度沿EF方向向右勻速運(yùn)動,當(dāng)點(diǎn)C與點(diǎn)F重合時(shí)暫停運(yùn)動,設(shè)△ABC的運(yùn)動時(shí)間為t秒(t≥0).

(1)在整個(gè)運(yùn)動過程中,設(shè)等邊△ABC和正方形DEFG重疊部分的面積為S,請直接寫出S與t之間的函數(shù)關(guān)系式;
(2)如圖2,當(dāng)點(diǎn)A與點(diǎn)D重合時(shí),作∠ABE的角平分線BM交AE于M點(diǎn),將△ABM繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),使邊AB與邊AC重合,得到△ACN.在線段AG上是否存在H點(diǎn),使得△ANH為等腰三角形.如果存在,請求出線段EH的長度;若不存在,請說明理由.
(3)如圖3,若四邊形DEFG為邊長為4
3
的正方形,△ABC的移動速度為每秒
3
個(gè)單位長度,其余條件保持不變.△ABC開始移動的同時(shí),Q點(diǎn)從F點(diǎn)開始,沿折線FG-GD以每秒2
3
個(gè)單位長度開始移動,△ABC停止運(yùn)動時(shí),Q點(diǎn)也停止運(yùn)動.設(shè)在運(yùn)動過程中,DE交折線BA-AC于P點(diǎn),則是否存在t的值,使得PC⊥EQ,若存在,請求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知:點(diǎn)A1、A2、A3、…在平面直角坐標(biāo)系x軸上,點(diǎn)B1、B2、B3、…在直線y=
3
3
x+1
上,△OA1B1、△A1B2A2、△A2B3A3…均為等邊三角形,求A2013的橫坐標(biāo)
(22013-1)
3
(22013-1)
3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC是等邊三角形,點(diǎn)D、E分別在邊BC、AC上.
(1)如果AD⊥BC,BE⊥AC,試證明∠APE=60°的理由;
(2)如果BD=EC,那么“∠APE=60°”是否還能成立?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案