如圖,△ABC內(nèi)接于⊙O,且AB=AC,BD是⊙O的直徑, AD與BC交于點E,
F在DA的延長線上,且BF=BE.

【小題1】試判斷BF與⊙O的位置關(guān)系,并說明理由
【小題2】若BF=5,cosC=,求⊙O的直徑

【小題1】BF與⊙O相切,連接OB、OA,連接BD(1分),
∵AD⊥AB,∴∠BAD=90°,
∴BD是直徑,∴BD過圓心
∵AB=AC,
∴∠ABC=∠C,
∵∠C=∠D,
∴∠ABC=∠D,
∵AD⊥AB,
∴∠ABD+∠D=90°,
∵AF=AE,
∴∠EBA=∠FBA,
∴∠ABD+∠FBA=90°,
∴OB⊥BF,
∴BF是⊙O切線(4分);
【小題2】∵∠C=∠D,cos∠C=,
∴cos∠D=
∵BF=5,
,
,
∴BD=×5=,
∴直徑為(8分).解析:
(1)連接OB、OA或連接BD,由AB=AC,則∠ABC=∠C,由BF=BE,則∠EBA=∠FBA,從而得出∠ABD+∠FBA=90°,即OB⊥BF,則BF是⊙O切線;
(2)由(1)得∠C=∠D,再由cos∠C=,得,則,從而求出BD.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

15、如圖,△ABC內(nèi)接于⊙O,∠BAC=120°,AB=AC=4.BD為⊙O的直徑,則BD=
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖,△ABC內(nèi)接于⊙O,AB為⊙O的直徑,點D在AB的延長線上,∠A=∠D=30°.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)證明:△AOC≌△DBC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,△ABC內(nèi)接于⊙O,連接AO并延長交BC于點D,若AO=5,BC=8,∠ADB=90°,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

18、如圖,△ABC內(nèi)接于⊙O,∠A=30°,若BC=4cm,則⊙O的直徑為( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,△ABC內(nèi)接于⊙O,AD⊥BC于點D,求證:∠BAD=∠CAO.

查看答案和解析>>

同步練習(xí)冊答案