如圖1,在Rt△AOB中,∠AOB=90°,AO=,∠ABO=30°.動點P在線段AB上從點A向終點B以每秒個單位的速度運動,設運動時間為t秒.在直線OB 上取兩點M、N作等邊△PMN.
(1)求當?shù)冗叀鱌MN的頂點M運動到與點O重合時t的值.
(2)求等邊△PMN的邊長(用t的代數(shù)式表示);
(3)如果取OB的中點D,以OD為邊在Rt△AOB 內(nèi)部作如圖2所示的矩形ODCE,點C在線段AB上.設等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.
(4)在(3)中,設PN與EC的交點為R,是否存在點R,使△ODR是等腰三角形?若存在,求出對應的t的值;若不存在,請說明理由.
解:(1)當?shù)冗叀鱌MN的頂點M運動到與點O重合時,
MP⊥AB,∵∠A=60°,∴AP=4,∴。(2分)
(2)∵AP=,∴BP=
又∵∠B=30°,∠PMB=600°,∴∠BPM=90°
tan∠B=
∴,即等邊△PMN的邊長為.(4分)
(3)①當時,如圖AP=,∴
∴,∴,
∴.
過F作FQ⊥0B于Q,則QN=4,∴EF=OQ=.
等邊△PMN和矩形ODCE重疊部分的面積為四邊形EFNO的面積,設為S1,
∴
∵>0,∴S1隨t的增大而增大,
∴t=1時,,∴S1的最大值為.(7分)
②當<t<2時,如圖
在△EGK中,GE=,∴EK=,
∴S△GEK=.
∴等邊△PMN和矩形ODCE重疊部分的面積為四邊形EFNO的面積與△EGK的面積差,設為S2,
∴.
∵,對稱軸為,
∴時,的最大值為.(9分)
當時,。
綜上可知:當時,S的最大值為.(10分)
(4)過R作RH⊥OB于H,RH=,HN=4,
OH=,OD=12,DH=,
①OR=OD=12時,,
∴,,∴>2,不合題意舍去。
②DR=OD=12時,,
∴,∴>2,或<0,都不合題意舍去。
③OR=DR時,H為CD中點,OH=6,∴,∴。
綜上所述,時,△ODR是等腰三角形。(12分)
【解析】(1)利用直角三角形中30°所對的邊是斜邊的一半即可求出AP,進而求出t的值;
(2)利用△BPH∽△BAO,得出PH的長,再利用解直角三角形求出PN的長;
(3)根據(jù)當0≤t≤1時以及當t=1時和當t=2時,分別求出S的值;
(4)根據(jù)當D為頂點,OD=OR1=6時,當R2為頂點,OR2=DR2時,③當O為等腰△的頂點時,分別得出即可
科目:初中數(shù)學 來源: 題型:
3 |
3 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2012屆重慶全善學校九年級下學期第二次月考數(shù)學試卷(帶解析) 題型:解答題
如圖1,在Rt△AOB中,∠AOB=90°,AO=,∠ABO=30°.動點P在線段AB上從點A向終點B以每秒個單位的速度運動,設運動時間為t秒.在直線OB 上取兩點M、N作等邊△PMN.
(1)求當?shù)冗叀鱌MN的頂點M運動到與點O重合時t的值.
(2)求等邊△PMN的邊長(用t的代數(shù)式表示);
(3)如果取OB的中點D,以OD為邊在Rt△AOB 內(nèi)部作如圖2所示的矩形ODCE,點C在線段AB上.設等邊△PMN和矩形ODCE重疊部分的面積為S,請求出當0≤t≤2秒時S與t的函數(shù)關系式,并求出S的最大值.
(4)在(3)中,設PN與EC的交點為R,是否存在點R,使△ODR是等腰三角形?若存在,求出對應的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com