如圖,二次函數(shù)y=-x2+bx+c的圖象與x軸交于點(diǎn)B(-3,0),與y軸交于點(diǎn)C(0,-3).
(1)求直線BC及二次函數(shù)的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,與x軸的另一個(gè)交點(diǎn)為A.點(diǎn)P在拋物線的對(duì)稱軸上,且∠APD=∠ACB,求點(diǎn)P的坐標(biāo);
(3)連接CD,求∠OCA與∠OCD兩角和的度數(shù).

【答案】分析:(1)根據(jù)待定系數(shù)法求直線BC的解析式即可;把點(diǎn)B、C的坐標(biāo)代入二次函數(shù),利用待定系數(shù)法求函數(shù)解析式解答;
(2)根據(jù)拋物線解析式求出頂點(diǎn)D的坐標(biāo),再根據(jù)二次函數(shù)的對(duì)稱性求出點(diǎn)A的坐標(biāo),連接AD,然后求出∠ADP=∠ABC=45°,然后證明△ADP和△ABC相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例列出比例式求出PD的長(zhǎng)度,從而得解;
(3)連接BD,利用勾股定理求出BD、BC的長(zhǎng)度,再求出∠CBD=90°,然后根據(jù)∠BCD與∠ACO的正切值相等可得∠BCD=∠ACO,從而得到∠OCA與∠OCD的和等于∠BCO,是45°.
解答:解:(1)設(shè)直線BC的解析式為y=kx+m,
∵點(diǎn)B(-3,0),點(diǎn)C(0,-3),

解得,
所以,直線BC的解析式為y=-x-3,
∵二次函數(shù)y=-x2+bx+c的圖象經(jīng)過(guò)點(diǎn)B(-3,0),點(diǎn)C(0,-3),
,
解得,
∴二次函數(shù)的解析式為y=-x2-4x-3;

(2)∵y=-x2-4x-3=-(x+2)2+1,
∴拋物線的頂點(diǎn)D(-2,1),對(duì)稱軸為x=-2,
∵A、B關(guān)于對(duì)稱軸對(duì)稱,點(diǎn)B(-3,0),
∴點(diǎn)A的坐標(biāo)為(-1,0),
AB=-1-(-3)=-1+3=2,
BC==3,
連接AD,則AD==,
tan∠ADP==1,
∴∠ADP=45°,
又∵B(-3,0),C(0,-3),
∴△OAC是等腰直角三角形,
∴∠ABC=45°,
∴∠ADP=∠ABC=45°,
又∵∠APD=∠ACB,
∴△ADP∽△ABC,
=,
=,
解得DP=3,
點(diǎn)P到x軸的距離為3-1=2,
點(diǎn)P的坐標(biāo)為(-2,-2);

(3)連接BD,∵B(-3,0),D(-2,1),
∴tan∠DBA==1,
∴∠DBA=45°,
根據(jù)勾股定理,BD==,
又∵∠ABC=45°,
∴∠DBC=45°×2=90°,
∴tan∠BCD===,
又∵tan∠OCA==,
∴∠BCD=∠OCA,
∴∠OCA+∠OCD=∠BCD+∠OCD=∠OCB,
∵B(-3,0),C(0,-3),
∴△OAC是等腰直角三角形,
∴∠OCB=45°,
即∠OCA與∠OCD兩角和是45°.
點(diǎn)評(píng):本題是對(duì)二次函數(shù)的綜合考查,主要利用了待定系數(shù)法求函數(shù)解析式,二次函數(shù)的對(duì)稱性,解直角三角形,勾股定理,以及相似三角形的判定與性質(zhì),利用數(shù)據(jù)的特殊性求出等腰直角三角形得到45°角,然后找出相等的角是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)D(0,
7
9
3
),且頂點(diǎn)C的橫坐標(biāo)為4,該圖象在x軸上截得的線段AB的長(zhǎng)為6.
(1)求二次函數(shù)的解析式;
(2)在該拋物線的對(duì)稱軸上找一點(diǎn)P,使PA+PD最小,求出點(diǎn)P的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)Q,使△QAB與△ABC相似?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,二次函數(shù)圖象的頂點(diǎn)為坐標(biāo)原點(diǎn)O,且經(jīng)過(guò)點(diǎn)A(3,3),一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A和點(diǎn)B(6,0).
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)如果一次函數(shù)圖象與y相交于點(diǎn)C,點(diǎn)D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點(diǎn)E,∠CDO=∠OED,求點(diǎn)D的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點(diǎn),與y軸交于點(diǎn)A(0,-3),∠ABC=45°,∠ACB=60°,求這個(gè)二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過(guò)程,如圖的二次函數(shù)圖象(部分)刻畫了該公司年初以來(lái)累積利潤(rùn)s(萬(wàn)元)與時(shí)間t(月)之間的關(guān)系(即前t個(gè)月的利潤(rùn)總和s與t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問(wèn)題:
(1)求累積利潤(rùn)s(萬(wàn)元)與時(shí)間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤(rùn)可達(dá)30萬(wàn)元;
(3)從第幾個(gè)月起公司開始盈利?該月公司所獲利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于兩個(gè)點(diǎn),根據(jù)圖象回答:(1)b
0(填“>”、“<”、“=”);
(2)當(dāng)x滿足
x<-4或x>2
x<-4或x>2
時(shí),ax2+bx+c>0;
(3)當(dāng)x滿足
x<-1
x<-1
時(shí),ax2+bx+c的值隨x增大而減小.

查看答案和解析>>

同步練習(xí)冊(cè)答案