如圖,正比例函數(shù)y1=k1x的圖象與反比例函數(shù)的圖象相交于A、B兩點,其中點A的坐標精英家教網為(1,2).
(1)分別求出這兩個函數(shù)的表達式;
(2)請你觀察圖象,寫出y1>y2時,x的取值范圍;
(3)在y軸上是否存在點P,使△AOP為等腰三角形?若存在,請你直接寫出點P的坐標;若不存在,請說明理由.
分析:(1)設直線方程為y1=k1x,反比例函數(shù)y=
k2
x
,兩圖象都經過點A,解得k1和k2,
(2)解得兩交點的坐標,觀察圖象寫出x的取值范圍,
(3)存在4種情況的點P,OP為腰和底兩種情況,分別求出OP.
解答:(1)解:∵y1=k1x過點A(1,2),
∴k1=2.(2分)
∴正比例函數(shù)的表達式為y1=2x.(3分)
∵反比例函數(shù)過點A(1,2),
∴k2=2.(5分)
∴反比例函數(shù)的表達式為y=
2
x
.(6分)

(2)-1<x<0或x>1.(8分)精英家教網

(3)∵點A的坐標為(1,2),
∴OA=
5

當OA為腰時,OA=OP2=
5
,P2點坐標為(0,4),
當AP1=OA=
5
,可知P1坐標為(0,
5
),
當OA=OP3=
5
時,可得P3坐標為(0,-
5

由圖可知,P1(0,
5
),P2(0,-
5
),P3(0,-4),
當OA為底時,OP4=
1
2
OA
cosAOP4
=
5
4
精英家教網
可知P4(0,
5
4
),
故P1(0,
5
),P2(0,-
5
),P3(0,-4),P4(0,
5
4
).(12分)
點評:本題主要考查了待定系數(shù)法求反比例函數(shù)與一次函數(shù)的解析式和反比例函數(shù)y=
k
x
中k的幾何意義.這里體現(xiàn)了數(shù)形結合的思想,做此類題一定要正確理解k的幾何意義.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,正比例函數(shù)y1=k1x與反比例函數(shù)y2=
k2
x
 相交于A、B點.已知點A的坐標為A(4,n),BD⊥x軸于點D,且S△BDO=4.過點A的一次函數(shù)y3=k3x+b與反比例函數(shù)的圖象交于另一點C,與x軸交于點E(5,0).
(1)求正比例函數(shù)y1、反比例函數(shù)y2和一次函數(shù)y3的解析式;
(2)結合圖象,求出當k3x+b>
k2
x
>k1x時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•廣州)如圖,正比例函數(shù)y1=k1x和反比例函數(shù)y2=
k2
x
的圖象交于A(-1,2)、B(1,-2)兩點,若y1<y2,則x的取值范圍是( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•紅河州)如圖,正比例函數(shù)y1=x的圖象與反比例函數(shù)y2=
kx
(k≠0)的圖象相交于A、B兩點,點A的縱坐標為2.
(1)求反比例函數(shù)的解析式;
(2)求出點B的坐標,并根據函數(shù)圖象,寫出當y1>y2時,自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,正比例函數(shù)y1=k1x和反比例函數(shù)y2=
k2x
的圖象交于A(-1,2)、B(1,-2)兩點,若y1<y2,則x的取值范圍是
-1<x<0或x>1
-1<x<0或x>1

查看答案和解析>>

同步練習冊答案