精英家教網 > 初中數學 > 題目詳情

【題目】對于二次函數y=x2﹣2mx﹣3,下列結論錯誤的是(
A.它的圖象與x軸有兩個交點
B.方程x2﹣2mx=3的兩根之積為﹣3
C.它的圖象的對稱軸在y軸的右側
D.x<m時,y隨x的增大而減小

【答案】C
【解析】解:A、∵b2﹣4ac=(2m)2+12=4m2+12>0, ∴二次函數的圖象與x軸有兩個交點,故此選項正確,不合題意;
B、方程x2﹣2mx=3的兩根之積為: =﹣3,故此選項正確,不合題意;
C、m的值不能確定,故它的圖象的對稱軸位置無法確定,故此選項錯誤,符合題意;
D、∵a=1>0,對稱軸x=m,
∴x<m時,y隨x的增大而減小,故此選項正確,不合題意;
故選:C.
直接利用二次函數與x軸交點個數、二次函數的性質以及二次函數與方程之間關系分別分析得出答案.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,一拋物線型拱橋,當拱頂到水面的距離為2米時,水面寬度為4米;那么當水位下降1米后,水面的寬度為米.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某種型號油電混合動力汽車,從A地到B地燃油行駛純燃油費用76元,從A地到B地用電行駛純電費用26元,已知每行駛1千米,純燃油費用比純用電費用多0.5元.
(1)求每行駛1千米純用電的費用;
(2)若要使從A地到B地油電混合行駛所需的油、電費用合計不超過39元,則至少用電行駛多少千米?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖1,已知平行四邊形ABCD頂點A的坐標為(2,6),點B在y軸上,且AD∥BC∥x軸,過B,C,D三點的拋物線y=ax2+bx+c(a≠0)的頂點坐標為(2,2),點F(m,6)是線段AD上一動點,直線OF交BC于點E.

(1)求拋物線的表達式;
(2)設四邊形ABEF的面積為S,請求出S與m的函數關系式,并寫出自變量m的取值范圍;
(3)如圖2,過點F作FM⊥x軸,垂足為M,交直線AC于P,過點P作PN⊥y軸,垂足為N,連接MN,直線AC分別交x軸,y軸于點H,G,試求線段MN的最小值,并直接寫出此時m的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】位于張家界核心景區(qū)的賀龍銅像,是我國近百年來最大的銅像.銅像由像體AD和底座CD兩部分組成.如圖,在Rt△ABC中,∠ABC=70.5°,在Rt△DBC中,∠DBC=45°,且CD=2.3米,求像體AD的高度(最后結果精確到0.1米,參考數據:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,將坐標原點O沿x軸向左平移2個單位長度得到點A,過點A作y軸的平行線交反比例函數y= 的圖象于點B,AB=

(1)求反比例函數的解析式;
(2)若P(x1 , y1)、Q(x2 , y2)是該反比例函數圖象上的兩點,且x1<x2時,y1>y2 , 指出點P、Q各位于哪個象限?并簡要說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在平面直角坐標系中,我們定義直線y=ax﹣a為拋物線y=ax2+bx+c(a、b、c為常數,a≠0)的“夢想直線”;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其“夢想三角形”.

已知拋物線y=﹣ x2 x+2 與其“夢想直線”交于A、B兩點(點A在點B的左側),與x軸負半軸交于點C.
(1)填空:該拋物線的“夢想直線”的解析式為 , 點A的坐標為 , 點B的坐標為;
(2)如圖,點M為線段CB上一動點,將△ACM以AM所在直線為對稱軸翻折,點C的對稱點為N,若△AMN為該拋物線的“夢想三角形”,求點N的坐標;
(3)當點E在拋物線的對稱軸上運動時,在該拋物線的“夢想直線”上,是否存在點F,使得以點A、C、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】函數y= 的大致圖象是(
A.
B.
C.
D.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】△ABC中,AB=12,AC= ,∠B=30°,則△ABC的面積是

查看答案和解析>>

同步練習冊答案