如圖.矩形ABCD的對(duì)角線相交于點(diǎn)O.DEAC,CEBD.
(1)求證:四邊形OCED是菱形;
(2)若∠ACB=30°,菱形OCED的面積為8
3
,求AC的長(zhǎng).
(1)證明:∵DEOC,CEOD,
∴四邊形OCED是平行四邊形.
∵四邊形ABCD是矩形,
∴AO=OC=BO=OD.
∴四邊形OCED是菱形;

(2)∵∠ACB=30°,
∴∠DCO=90°-30°=60°.
又∵OD=OC,
∴△OCD是等邊三角形.
過D作DF⊥OC于F,則CF=
1
2
OC,設(shè)CF=x,則OC=2x,AC=4x.
在Rt△DFC中,tan60°=
DF
FC

∴DF=
3
x.
∴OC•DF=8
3

∴x=2.
∴AC=4×2=8.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,長(zhǎng)方形ABCD在平面直角坐標(biāo)系中,點(diǎn)A(1,8),B(1,6),C(7,6).
(1)請(qǐng)直接寫出D點(diǎn)的坐標(biāo)______.
(2)連接線段OB、OD、BD,請(qǐng)直接求出△OBD的面積______.
(3)若長(zhǎng)方形ABCD以每秒1個(gè)單位的速度向下運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為t秒,問是否存在某一時(shí)刻,△OBD的面積與長(zhǎng)方形ABCD的面積相等?若存在,請(qǐng)求出t的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知矩形的一條對(duì)角線長(zhǎng)為8cm,兩條對(duì)角線的一個(gè)夾角為60°,求矩形邊AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,把兩個(gè)大小完全一樣的矩形拼成“L”形圖案,則∠FAC=______度,∠FCA=______度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,矩形ABCD的面積為5,它的兩條對(duì)角線交于點(diǎn)O1,以AB,AO1為兩鄰邊作平行四邊形ABC1O1,平行四邊形ABC1O1的對(duì)角線交于點(diǎn)O2,同樣以AB,AO2為兩鄰邊作平行四邊形ABC2O2,…,依此類推,則平行四邊形ABCnOn的面積為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在矩形ABCD中,點(diǎn)E、F分別在AB、CD上,AFEC,△AFD與四邊形AECF的面積相等.已知AB=6cm,BC=3cm,則AF與CE之間的距離是______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,O是矩形ABCD的對(duì)角線BD的中點(diǎn),過點(diǎn)O的直線EF垂直BD,交AD于點(diǎn)E,交BC于點(diǎn)F,AE=5cm,DE=13cm,則矩形ABCD的周長(zhǎng)為______cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

已知在矩形ABCD中,AC=12,∠ACB=15°,那么頂點(diǎn)D到AC的距離為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖1,在△ABC中,AB=BC=5,AC=6.△ECD是△ABC沿BC方向平移得到的,連接AE.AC和BE相交于點(diǎn)O.
(1)判斷四邊形ABCE是怎樣的四邊形,說明理由;
(2)如圖2,P是線段BC上一動(dòng)點(diǎn)(圖2),(不與點(diǎn)B、C重合),連接PO并延長(zhǎng)交線段AB于點(diǎn)Q,QR⊥BD,垂足為點(diǎn)R.
①四邊形PQED的面積是否隨點(diǎn)P的運(yùn)動(dòng)而發(fā)生變化?若變化,請(qǐng)說明理由;若不變,求出四邊形PQED的面積;
②當(dāng)線段BP的長(zhǎng)為何值時(shí),△PQR與△BOC相似.

查看答案和解析>>

同步練習(xí)冊(cè)答案