我們發(fā)現(xiàn),用不同的方式表示同一圖形的面積可以解決線(xiàn)段長(zhǎng)度之間關(guān)系的有關(guān)問(wèn)題這種方法稱(chēng)為等面積法,這是一種重要的數(shù)學(xué)方法.請(qǐng)你用等面積法來(lái)探究下列兩個(gè)問(wèn)題:

(1)如圖1是著名的趙爽弦圖,由四個(gè)全等的直角三角形拼成,請(qǐng)你用它來(lái)驗(yàn)證勾股定理;

(2)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC= 4,BC=3,求CD的長(zhǎng)度.

 

(第23題圖1)

 

(第23題圖2)

 
 


解:(1)∵大正方形面積為c2,直角三角形面積為 ab,小正方形面積為:(b-a)2,

∴ c2 = 4×ab+(a-b)2 = 2ab + a2-2ab+b2

即c2 = a2+b2.…………………… 4分

       (2)在Rt△ABC中,

 ∵∠ACB=90°,

∴由勾股定理,得: 

∵ CD⊥AB,

∴ S△ABC =AC·BC=AB·CD

 ∴ CD =

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

我們發(fā)現(xiàn),用不同的方式表示同一圖形的面積可以解決線(xiàn)段長(zhǎng)度之間關(guān)系的有關(guān)問(wèn)題,這種方法稱(chēng)為等面積法,這是一種重要的數(shù)學(xué)方法.請(qǐng)你用等面積法來(lái)探究下列兩個(gè)問(wèn)題:
(1)如圖1是著名的趙爽弦圖,由四個(gè)全等的直角三角形拼成,請(qǐng)你用它來(lái)驗(yàn)證勾股定理;
(2)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC=4,BC=3,求CD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東佛山南海鹽步中學(xué)初二上周質(zhì)量數(shù)學(xué)試卷(帶解析) 題型:解答題

我們發(fā)現(xiàn),用不同的方式表示同一圖形的面積可以解決線(xiàn)段長(zhǎng)度之間關(guān)系的有關(guān)問(wèn)題這種方法稱(chēng)為等面積法,這是一種重要的數(shù)學(xué)方法.請(qǐng)你用等面積法來(lái)探究下列兩個(gè)問(wèn)題:

(1)如圖1是著名的趙爽弦圖,由四個(gè)全等的直角三角形拼成,請(qǐng)你用它來(lái)驗(yàn)證勾股定理;
(2)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC= 4,BC=3,求CD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年廣東佛山南海鹽步中學(xué)初二上周質(zhì)量數(shù)學(xué)試卷(解析版) 題型:解答題

我們發(fā)現(xiàn),用不同的方式表示同一圖形的面積可以解決線(xiàn)段長(zhǎng)度之間關(guān)系的有關(guān)問(wèn)題這種方法稱(chēng)為等面積法,這是一種重要的數(shù)學(xué)方法.請(qǐng)你用等面積法來(lái)探究下列兩個(gè)問(wèn)題:

(1)如圖1是著名的趙爽弦圖,由四個(gè)全等的直角三角形拼成,請(qǐng)你用它來(lái)驗(yàn)證勾股定理;

(2)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC= 4,BC=3,求CD的長(zhǎng)度.

 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

我們發(fā)現(xiàn),用不同的方式表示同一圖形的面積可以解決線(xiàn)段長(zhǎng)度之間關(guān)系的有關(guān)問(wèn)題,這種方法稱(chēng)為等面積法,這是一種重要的數(shù)學(xué)方法.請(qǐng)你用等面積法來(lái)探究下列兩個(gè)問(wèn)題:
(1)如圖1是著名的趙爽弦圖,由四個(gè)全等的直角三角形拼成,請(qǐng)你用它來(lái)驗(yàn)證勾股定理;
(2)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC=4,BC=3,求CD的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:廣東省期末題 題型:解答題

我們發(fā)現(xiàn),用不同的方式表示同一圖形的面積可以解決線(xiàn)段長(zhǎng)度之間關(guān)系的有關(guān)問(wèn)題,這種方法稱(chēng)為等面積法,這是一種重要的數(shù)學(xué)方法。請(qǐng)你用等面積法來(lái)探究下列兩個(gè)問(wèn)題:
(1)如圖1是著名的趙爽弦圖,由四個(gè)全等的直角三角形拼成,請(qǐng)你用它來(lái)驗(yàn)證勾股定理;
(2)如圖2,在Rt△ABC中,∠ACB=90°,CD是AB邊上的高,AC=4,BC=3,求CD的長(zhǎng)度。

查看答案和解析>>

同步練習(xí)冊(cè)答案