(2007•黑龍江)△ABC是⊙O的內(nèi)接三角形,OD⊥BC,垂足為D,若∠BOD=40°,則∠BAC的度數(shù)為    度.
【答案】分析:先求出圓心角∠BOC的度數(shù),再根據(jù)同圓或等圓中的圓心角和圓周角的關(guān)系,即可求出,但是要分圓心在三角形內(nèi)部和外部兩種情況討論.
解答:解:如圖,OD⊥BC,由垂徑定理知,點D是BC的中點,△BOC是等腰三角形,OD是∠BOC的平分線,
∴∠BOC=2∠BOD=80°,
點A的位置有兩種情況:

①當(dāng)點A在如圖位置時,由圓周角定理知,∠A=∠BOD=40°,
②當(dāng)點A在劣弧BC上時,在優(yōu)弧上取點A′,連接A′B和A′C,則∠A′=40°,
由圓內(nèi)接四邊形的對角互補知,∠BAC=180°-40°=140°.
因此∠BAC的度數(shù)為40°或140°.
點評:本題利用了垂徑定理,等腰三角形的性質(zhì),圓周角定理:在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半.注意點A的位置有兩種情況.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2007年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2007•黑龍江)甲、乙二人騎自行車同時從張莊出發(fā),沿同一路線去李莊.甲行駛20分鐘因事耽誤一會兒,事后繼續(xù)按原速行駛.如圖表示甲、乙二人騎自行車行駛的路程y(千米)隨時間x(分)變化的圖象(全程),根據(jù)圖象回答下列問題:
(1)乙比甲晚多長時間到達(dá)李莊?
(2)甲因事耽誤了多長時間?
(3)x為何值時,乙行駛的路程比甲行駛的路程多1千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2009年黑龍江省牡丹江市中考數(shù)學(xué)二模試卷(解析版) 題型:解答題

(2007•黑龍江)如圖,點A為x軸負(fù)半軸上一點,點B為x軸正半軸上一點,OA,OB(OA<OB)的長分別是關(guān)于x的一元二次方程x2-4mx+m2+2=0的兩根,C(0,3),且S△ABC=6
(1)求∠ABC的度數(shù);
(2)過點C作CD⊥AC交x軸于點D,求點D的坐標(biāo);
(3)在第(2)問的條件下,y軸上是否存在點P,使∠PBA=∠ACB?若存在,請直接寫出直線PD的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•黑龍江)如圖,點A為x軸負(fù)半軸上一點,點B為x軸正半軸上一點,OA,OB(OA<OB)的長分別是關(guān)于x的一元二次方程x2-4mx+m2+2=0的兩根,C(0,3),且S△ABC=6
(1)求∠ABC的度數(shù);
(2)過點C作CD⊥AC交x軸于點D,求點D的坐標(biāo);
(3)在第(2)問的條件下,y軸上是否存在點P,使∠PBA=∠ACB?若存在,請直接寫出直線PD的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2007•黑龍江)甲、乙二人騎自行車同時從張莊出發(fā),沿同一路線去李莊.甲行駛20分鐘因事耽誤一會兒,事后繼續(xù)按原速行駛.如圖表示甲、乙二人騎自行車行駛的路程y(千米)隨時間x(分)變化的圖象(全程),根據(jù)圖象回答下列問題:
(1)乙比甲晚多長時間到達(dá)李莊?
(2)甲因事耽誤了多長時間?
(3)x為何值時,乙行駛的路程比甲行駛的路程多1千米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2007年黑龍江省中考數(shù)學(xué)試卷(解析版) 題型:填空題

(2007•黑龍江)拋物線y=x2+bx+3經(jīng)過點(3,0),則b的值為   

查看答案和解析>>

同步練習(xí)冊答案