【題目】如圖,在Rt△ABC中,∠C=90°,AC≠BC,點M是邊AC上的動點.過點M作MN∥AB交BC于N,現(xiàn)將△MNC沿MN折疊,得到△MNP.若點P在AB上.則以MN為直徑的圓與直線AB的位置關系是 .
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知BC是⊙O的直徑,點D為BC延長線上的一點,點A為圓上一點,且AB=AD,AC=CD.
(1)求證:△ACD∽△BAD;
(2)求證:AD是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,已知A(﹣1,5),B(4,2),C(﹣1,0)三點.點A關于原點O的對稱點A′,點B關于軸的對稱點為B′,點C關于軸的對稱點為C′.
(1)A′的坐標為 ,B′的坐標為 ,C′的坐標為 .
(2)建立平面直角坐標系,描出以下三點A、B′、C′,并求△AB′C′的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某開發(fā)區(qū)在一項工程招標時,接到甲、乙兩個工程隊的投標書,工程領導小組根據(jù)甲、乙兩隊的投標書測算,可有三種施工方案:①甲隊單獨完成這項工程,剛好如 期完成;②乙隊單獨完成此項工程要比規(guī)定工期多用5天;③ ,剩下的工程由乙隊單獨做,也正好如期完工.小亮設規(guī)定的工期為x天,根據(jù)題意列出了方 程: ,則方案③中被墨水污染的部分應該是( )
A.甲先做了4天
B.甲乙合作了4天
C.甲先做了工程的
D.甲乙合作了工程的
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知等腰三角形的腰長為6cm,底邊長為4cm,以等腰三角形的頂角的頂點為圓心5cm為半徑畫圓,那么該圓與底邊的位置關系是( )
A.相離
B.相切
C.相交
D.不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某市射擊隊為從甲、乙兩名運動員中選拔一人參加省比賽,對他們進行了六次測試,測試成績?nèi)缦卤?/span>單位:環(huán):
第1次 | 第2次 | 第3次 | 第4次 | 第5次 | 第6次 | |
甲 | 10 | 9 | 8 | 8 | 10 | 9 |
乙 | 10 | 10 | 8 | 10 | 7 | 9 |
根據(jù)表格中的數(shù)據(jù),可計算出甲、乙兩人的平均成績都是9環(huán).
(1)分別計算甲、乙六次測試成績的方差;
(2)根據(jù)數(shù)據(jù)分析的知識,你認為選______名隊員參賽.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c中,自變量x與函數(shù)y之間的部分對應值如下表:
在該函數(shù)的圖象上有A(x1 , y1)和B(x2 , y2)兩點,且-1<x1<0,3<x2<4,y1與y2的大小關系正確的是( )
A.y1≥y2
B.y1>y2
C.y1≤y2
D.y1<y2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:直線AB∥CD,點M,N分別在直線AB,CD上,點E為平面內(nèi)一點.
(1)如圖1,∠BME,∠E,∠END的數(shù)量關系為 (直接寫出答案);
(2)如圖2,∠BME=m°,EF平分∠MEN,NP平分∠END,EQ∥NP,求∠FEQ的度數(shù)(用用含m的式子表示)
(3)如圖3,點G為CD上一點,∠BMN=n·∠EMN,∠GEK=n·∠GEM,EH∥MN交AB于點H,探究∠GEK,∠BMN,∠GEH之間的數(shù)量關系(用含n的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀理解:
若一個整數(shù)能表示成a2+b2(a、b是整數(shù))的形式,則稱這個數(shù)為“平和數(shù)”,例如5是“平和數(shù)”,因為5=22+1,再如,M=x2+2xy+2y2=(x+y)2+y2(x,y是整數(shù)),我們稱M也是“平和數(shù)”.
(1)請你寫一個小于5的“平和數(shù)”,并判斷34是否為“平和數(shù)”.
(2)已知S=x2+9y2+6x﹣6y+k(x,y是整數(shù),k是常數(shù),要使S為“平和數(shù)”,試求出符合條件的一個k值,并說明理由.
(3)如果數(shù)m,n都是“平和數(shù)”,試說明也是“平和數(shù)”.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com