如圖,已知矩形紙片ABCD中,AB=3,BC=6,E在矩形ABCD的邊AD上,點F在矩形ABCD的邊BC上,且BF=5,把矩形紙片ABCD沿EF折疊,BF的對應(yīng)線段FB′交邊AD于點G.

(1)判斷△EFG是何種特殊三角形,并證明你的結(jié)論.
(2)在折疊過程中,不重疊部分(陰影圖形)的周長之和p會發(fā)生變化嗎?若不變化,請求出p的值;若變化,請說明理由.
(3)當(dāng)△EFG是銳角三角形時,求AE的取值范圍.
分析:(1)利用翻折變換的性質(zhì)得出:∠1=∠3,2=∠3,則∠1=∠2,即可得出答案;
(2)利用翻折變換的性質(zhì)得出AE=A′E,B′F=BF,AB′=AB′,即可得出答案;
(3)分別求出當(dāng)B′F⊥AD時,則∠AGF=90°,以及當(dāng)FB′經(jīng)過點D時,分別得出AE的長,即可得出AE的取值范圍.
解答:解:(1)△EFG是等腰三角形,
理由:根據(jù)題意得出:∠1=∠3,2=∠3,
∴∠1=∠2,
∴EG=GF,
∴△EFG是等腰三角形;

(2)不變,
理由:根據(jù)翻折變換的性質(zhì)得出:AE=A′E,B′F=BF,AB′=AB′,
∴陰影圖形的周長之和p為:AB+CD+BC+AD=18;

(3)當(dāng)B′F⊥AD時,則∠AGF=90°,
∴EG=FG=AB=3,
∵BF=5,
∴AE=2,
當(dāng)FB′經(jīng)過點D時,
則FD=
CD2+FC2
=
10
,
∴ED=
10
,
∴AE=AD=ED=
10
,
∴△EFG是銳角三角形時,AE的取值范圍是:2<AE≤6-
10
點評:此題主要考查了四邊形綜合應(yīng)用以及翻折變換的性質(zhì)和勾股定理等知識,利用極值法進(jìn)行分類討論得出AE的取值范圍是解題關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

7、如圖,已知矩形紙片ABCD,點E是AB的中點,點G是BC上的一點,∠BEG=60°.現(xiàn)沿直線EG將紙片折疊,使點B落在紙片上的點H處,連接AH,則與∠BEG相等的角的個數(shù)為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知矩形紙片ABCD,AD=2,AB=
3
,以A為圓心,AD長為半徑畫弧交BC于點E,將扇形AED剪下圍成一個圓錐,則該圓錐的底面半徑為( 。
A、1
B、
1
2
C、
1
3
D、
1
4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•南寧)如圖,已知矩形紙片ABCD,AD=2,AB=4.將紙片折疊,使頂點A與邊CD上的點E重合,折痕FG分別與AB,CD交于點G,F(xiàn),AE與FG交于點O.
(1)如圖1,求證:A,G,E,F(xiàn)四點圍成的四邊形是菱形;
(2)如圖2,當(dāng)△AED的外接圓與BC相切于點N時,求證:點N是線段BC的中點;
(3)如圖2,在(2)的條件下,求折痕FG的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•安慶二模)如圖,已知矩形紙片ABCD,E是AB邊的中點,點G為BC邊上的一點,現(xiàn)沿EG將紙片折疊,使點B落在紙片上的點H處,連接AH.若AB=EG,則與∠BEG相等的角的個數(shù)為( 。

查看答案和解析>>

同步練習(xí)冊答案