(2010•盧灣區(qū)二模)數(shù)學課上,張老師出示了問題1:如圖1,四邊形ABCD是正方形,BC=1,對角線交點記作O,點E是邊BC延長線上一點.連接OE交CD邊于F,設CE=x,CF=y,求y關于x的函數(shù)解析式及其定義域.
(1)經(jīng)過思考,小明認為可以通過添加輔助線--過點O作OM⊥BC,垂足為M求解.你認為這個想法可行嗎?請寫出問題1的答案及相應的推導過程;
(2)如果將問題1中的條件“四邊形ABCD是正方形,BC=1”改為“四邊形ABCD是平行四邊形,BC=3,CD=2,”其余條件不變(如圖2),請直接寫出條件改變后的函數(shù)解析式;
(3)如果將問題1中的條件“四邊形ABCD是正方形,BC=1”進一步改為:“四邊形ABCD是梯形,AD∥BC,BC=a,CD=b,AD=c(其中a,b,c為常量)”其余條件不變(如圖3),請你寫出條件再次改變后y關于x的函數(shù)解析式以及相應的推導過程.

【答案】分析:(1)由四邊形ABCD是正方形,可得OB=OD,又由OM⊥BC,易證得OM∥DC,由平行線分線段成比例定理即可求得y關于x的函數(shù)解析式;
(2)作OM∥CD交BC于點M,利用(1)中的方法,即可求得y關于x的函數(shù)解析式;
(3)首先作ON∥CD交BC于點N,由平行線分線段成比例定理即可求得y關于x的函數(shù)解析式.
解答:解:(1)如圖:
∵四邊形ABCD是正方形,
∴OB=OD.
∵OM⊥BC,
∴∠OMB=∠DCB=90°,
∴OM∥DC.
∴OM=DC=,CM=BC=
∵OM∥DC,

,
解得.定義域為x>0.

(2)(x>0).

(3)如右圖:
AD∥BC,,
過點O作ON∥CD,交BC于點N,
,

∵ON∥CD,,


∵ON∥CD,
,即
∴y關于x的函數(shù)解析式為(x>0).
點評:此題考查了平行線分線段成比例定理.此題的圖形變化比較多,難度較大,解題的關鍵是注意識圖,準確應用數(shù)形結合思想解題.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年上海市盧灣區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•盧灣區(qū)二模)如圖,在平面直角坐標系xOy中,拋物線y=-x2+bx+c經(jīng)過點A(1,3),B(0,1).
(1)求拋物線的表達式及其頂點坐標;
(2)過點A作x軸的平行線交拋物線于另一點C,
①求△ABC的面積;
②在y軸上取一點P,使△ABP與△ABC相似,求滿足條件的所有P點坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年上海市盧灣區(qū)中考數(shù)學二模試卷(解析版) 題型:填空題

(2010•盧灣區(qū)二模)如果將拋物線y=-3x2沿y軸向上平移2個單位后,得到新的拋物線,那么新拋物線的表達式為    

查看答案和解析>>

科目:初中數(shù)學 來源:2010年上海市盧灣區(qū)中考數(shù)學二模試卷(解析版) 題型:填空題

(2010•盧灣區(qū)二模)若一次函數(shù)的圖象如圖所示,則此一次函數(shù)的解析式為   

查看答案和解析>>

科目:初中數(shù)學 來源:2010年上海市盧灣區(qū)中考數(shù)學二模試卷(解析版) 題型:解答題

(2010•盧灣區(qū)二模)如圖,已知OC是⊙O的半徑,弦AB=6,AB⊥OC,垂足為M,且CM=2.
(1)連接AC,求∠CAM的正弦值;
(2)求OC的長.

查看答案和解析>>

同步練習冊答案