已知拋物線)與軸相交于點(diǎn),頂點(diǎn)為.直線軸相交于點(diǎn),與直線相交于點(diǎn);直線軸相交于點(diǎn)

(1)求的坐標(biāo)與MA的解析式(用字母表示),

(2)如圖,將△沿軸翻折,若點(diǎn)的對應(yīng)點(diǎn)′恰好落在拋物線上,求的值

(3)在拋物線)上是否存在一點(diǎn),使得以P、B、C、N為頂點(diǎn)的四邊形是平行四邊形?若存在,求出的值;若不存在,說明理由

.

 (1)M(-1,)MA:

   (2)

(3),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

設(shè)拋物線C的解析式為:y=x2-2kx+(
3
+k)k,k為實(shí)數(shù).
(1)求拋物線的頂點(diǎn)坐標(biāo)和對稱軸方程(用k表示);
(2)任意給定k的三個(gè)不同實(shí)數(shù)值,請寫出三個(gè)對應(yīng)的頂點(diǎn)坐標(biāo);試說明當(dāng)k變化時(shí),拋物線C的頂點(diǎn)在一條定直線L上,求出直線L的解析式并畫出圖象;
(3)在第一象限有任意兩圓O1、O2相外切,且都與x軸和(2)中的直線L相切.設(shè)兩圓在x軸上的切點(diǎn)分別為A、B(OA<OB),試問:
OA
OB
是否為一定值?若是,請求出該定值;若不是,請說明理由;
(4)已知一直線L1與拋物線C中任意一條都相截,且截得的線段長都為6,求這條直線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=
3
4
x2+bx+c與坐標(biāo)軸交于A、B、C三點(diǎn),A點(diǎn)的坐標(biāo)為(-1,0),過點(diǎn)C的直線y=
3
4t
x-3
與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),過P作PH垂直O(jiān)B于點(diǎn)H,若PB=5t,且0<t<1,存在使P,H,Q為頂點(diǎn)的三角形與三角形COQ相似的t的值有
2
-1;
7
32
25
32
2
-1;
7
32
;
25
32

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年浙江省初中畢業(yè)生學(xué)業(yè)考試適應(yīng)性監(jiān)測考試數(shù)學(xué)試卷(解析版) 題型:解答題

(2011•相城區(qū)一模)在平面直角坐標(biāo)系xOy中,已知拋物線y=-+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸的正半軸于點(diǎn)C,其頂點(diǎn)為M,MH⊥x軸于點(diǎn)H,MA交y軸于點(diǎn)N,sin∠MOH=
(1)求此拋物線的函數(shù)表達(dá)式;
(2)過H的直線與y軸相交于點(diǎn)P,過O,M兩點(diǎn)作直線PH的垂線,垂足分別為E,F(xiàn),若=時(shí),求點(diǎn)P的坐標(biāo);
(3)將(1)中的拋物線沿y軸折疊,使點(diǎn)A落在點(diǎn)D處,連接MD,Q為(1)中的拋物線上的一動(dòng)點(diǎn),直線NQ交x軸于點(diǎn)G,當(dāng)Q點(diǎn)在拋物線上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使△ANG與△ADM相似?若存在,求出所有符合條件的直線QG的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省武漢市五月調(diào)考九年級數(shù)學(xué)試卷(解析版) 題型:解答題

(2011•相城區(qū)一模)在平面直角坐標(biāo)系xOy中,已知拋物線y=-+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸的正半軸于點(diǎn)C,其頂點(diǎn)為M,MH⊥x軸于點(diǎn)H,MA交y軸于點(diǎn)N,sin∠MOH=
(1)求此拋物線的函數(shù)表達(dá)式;
(2)過H的直線與y軸相交于點(diǎn)P,過O,M兩點(diǎn)作直線PH的垂線,垂足分別為E,F(xiàn),若=時(shí),求點(diǎn)P的坐標(biāo);
(3)將(1)中的拋物線沿y軸折疊,使點(diǎn)A落在點(diǎn)D處,連接MD,Q為(1)中的拋物線上的一動(dòng)點(diǎn),直線NQ交x軸于點(diǎn)G,當(dāng)Q點(diǎn)在拋物線上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使△ANG與△ADM相似?若存在,求出所有符合條件的直線QG的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2010年湖北省武漢市教育科學(xué)研究院命制中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

(2011•相城區(qū)一模)在平面直角坐標(biāo)系xOy中,已知拋物線y=-+c與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),交y軸的正半軸于點(diǎn)C,其頂點(diǎn)為M,MH⊥x軸于點(diǎn)H,MA交y軸于點(diǎn)N,sin∠MOH=
(1)求此拋物線的函數(shù)表達(dá)式;
(2)過H的直線與y軸相交于點(diǎn)P,過O,M兩點(diǎn)作直線PH的垂線,垂足分別為E,F(xiàn),若=時(shí),求點(diǎn)P的坐標(biāo);
(3)將(1)中的拋物線沿y軸折疊,使點(diǎn)A落在點(diǎn)D處,連接MD,Q為(1)中的拋物線上的一動(dòng)點(diǎn),直線NQ交x軸于點(diǎn)G,當(dāng)Q點(diǎn)在拋物線上運(yùn)動(dòng)時(shí),是否存在點(diǎn)Q,使△ANG與△ADM相似?若存在,求出所有符合條件的直線QG的解析式;若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案