已知等邊三角形△ABC和點P,過點P作三邊AB、AC、BC的平行線分別交AC、BC、AB于F、G、E,如圖①,點P在BC邊上可得PE+PF+PG=BC.當點P在△ABC內部時(如圖②),點P在△ABC外部時如圖③,這兩種情況下是否還存在PE+PF+PG=BC的結論?若成立請給予證明,若不成立,那么PE、PF、PG與BC又有怎樣的關系,請寫出你的猜想,不需證明.
(1)如圖②,延長FP,與BC交于點D,
∵等邊三角形△ABC,
∴∠A=∠B=∠C=60°
∵PEBC,PGAC,PFAB,
∴∠A=∠B=∠C=∠PGD=∠PDG=∠AEP=∠CFP=60°,EP=BD,
∴△PDG為等邊三角形,四邊形PECG為等腰梯形,
∴PG=DG,PE=BD,PF=CG,
∵BC=BD+DG+CG,
∴BC=PE+PF+PG,

(2)如圖③,點P在△ABC外部時,PE+PF+PG=BC的結論不成立,
PE、PF、PG與BC的關系為:PE+PG-PF=BC.
如圖③,延長PF,與BC交于點D,
∵等邊三角形△ABC,
∴∠A=∠B=∠ACB=60°
∵PEBC,PGAC,PFAB,
∴∠A=∠B=∠ACB=∠PGD=∠PDG=∠AEP=∠CFD=60°,EP=BD,
∴△PDG為等邊三角形,四邊形PFCG為等腰梯形,
∴PG=DG,PE=BD,PF=CG,
∵BC=BD+DG-CG,
∴BC=PE+PG-PF.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

邊長為a的正三角形的面積等于______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,在等邊三角形ABC中,AD⊥BC于點D,以AD為一邊向右作等邊三角形ADE,DE與AC交于點F.
(1)試判斷DF與EF的數(shù)量關系,并給出理由.
(2)若CF的長為2cm,試求等邊三角形ABC的邊長.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,等邊△ABC的邊長為2,△BDC是頂角∠BDC=120°的等腰三角形,以D為頂點作一個60°的角,角的兩邊分別交AB于M,交AC于N,連接MN,形成一個△AMN,則△AMN的周長為______.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,等邊△ABC中,D、E分別在AB、AC上,且AD=CE,BE、CD交于點P,若∠ABE:∠CBE=1:2,則∠BDP=______度.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,扇形ODE的圓心角為120°,正三角形ABC的中心恰好為扇形ODE的圓心,且點B在扇形ODE內
(1)請連接OA、OB,并證明△AOF≌△BOG;
(2)求證:△ABC與扇形ODE重疊部分的面積等于△ABC面積的
1
3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知等邊△ABC和點P,設點P到△ABC三邊AB、AC、BC(或其延長線)的距離分別為h1、h2、h3,△ABC的高為h.
在圖(1)中,點P是邊BC的中點,此時h3=0,可得結論:h1+h2+h3=h.
在圖(2),(3),(4),(5)中,點P分別在線段MC上、MC延長線上、△ABC內、△ABC外.
(1)請?zhí)骄浚簣D(2),(3),(4),(5)中,h1、h2、h3、h之間的關系;(直接寫出結論)圖②-⑤中的關系依次是:
h1+h2+h3=h;h1-h2+h3=h;h1+h2+h3=h;h1+h2-h3=h;
(2)證明圖(2)所得結論;
(3)證明圖(4)所得結論;
(4)(附加題2分)在圖(6)中,若四邊形RBCS是等腰梯形,∠B=∠C=60°,RS=n,BC=m,點P在梯形內,且點P到四邊BR、RS、SC、CB的距離分別是h1、h2、h3、h4,橋形的高為h,則h1、h2、h3、h4、h之間的關系為:h1+h3+h4=
mh
m-n
.圖(4)與圖(6)中的等式有何關系.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

由6條長度均為2cm的線段可構成邊長為2cm的n個等邊三角形,則n的最大值為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,△ABC中,AB=AC,∠A=∠ACB.
(1)求證:△ABC是等邊三角形;
(2)若D為AB的中點,P為CD上的點,Q為PC的中點,且PE⊥AC于點E,QF⊥BC于點F,試求
4PE
QF
的立方根.

查看答案和解析>>

同步練習冊答案