【題目】一輛快車從甲地開往乙地,一輛慢車從乙地開往甲地,兩車同時(shí)出發(fā),設(shè)慢車離乙地的距離為y1(km),快車離乙地的距離為y2(km),慢車行駛時(shí)間為x(h),兩車之間的距離為S(km),y1,y2與x的函數(shù)關(guān)系圖象如圖(1)所示,S與x的函數(shù)關(guān)系圖象如圖(2)所示:
(1)圖中的a= ,b= .
(2)求S關(guān)于x的函數(shù)關(guān)系式.
(3)甲、乙兩地間依次有E、F兩個(gè)加油站,相距200km,若慢車進(jìn)入E站加油時(shí),快車恰好進(jìn)入F站加油.求E加油站到甲地的距離.
【答案】(1)a=6,b=;(2);(3)450km或300km.
【解析】
(1)根據(jù)S與x之間的函數(shù)關(guān)系式可以得到當(dāng)位于C點(diǎn)時(shí),兩車之間的距離增加變緩,此時(shí)快車到站,指出此時(shí)a的值即可,求得a的值后求出兩車相遇時(shí)的時(shí)間即為b的值;
(2)根據(jù)函數(shù)的圖象可以得到A、B、C、D的點(diǎn)的坐標(biāo),利用待定系數(shù)法求得函數(shù)的解析式即可.
(3)分兩車相遇前和兩車相遇后兩種情況討論,當(dāng)相遇前令s=200代入直線AB解析式,當(dāng)相遇后令s=200代入直線BC解析式即可求得x的值.
解:(1)由S與x之間的函數(shù)的圖象可知:當(dāng)位于C點(diǎn)時(shí),兩車之間的距離增加變緩,
∴由此可以得到a=6,
∴快車每小時(shí)行駛100千米,慢車每小時(shí)行駛60千米,兩地之間的距離為600,
∴b=600÷(100+60)=;
(2)∵從函數(shù)的圖象上可以得到A、B、C、D點(diǎn)的坐標(biāo)分別為:(0,600)、(,0)、(6,360)、(10,600),
∴設(shè)線段AB所在直線解析式為:S=kx+b,
∴ ,
解得:k=160,b=600,
設(shè)線段BC所在的直線的解析式為:S=kx+b,
∴
解得:k=160,b=600,
設(shè)直線CD的解析式為:S=kx+b,
∴,
解得:k=60,b=0
∴;
(3)當(dāng)兩車相遇前分別進(jìn)入兩個(gè)不同的加油站,
此時(shí):S=160x+600=200,
解得:x= ,
當(dāng)兩車相遇后分別進(jìn)入兩個(gè)不同的加油站,
此時(shí):S=160x600=200,
解得:x=5,
∴當(dāng)x=或5時(shí),此時(shí)E加油站到甲地的距離為450km或300km.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c(a≠0)的對稱軸為直線x=﹣1,與x軸的一個(gè)交點(diǎn)A在點(diǎn)(﹣3,0)和(﹣2,0)之間,其部分圖象如圖,則下列結(jié)論:①4ac﹣b2<0;②2a﹣b=0;③a+b+c<0;④點(diǎn)M(x1,y1)、N(x2,y2)在拋物線上,若x1<x2,則y1≤y2,其中正確結(jié)論的個(gè)數(shù)是( )
A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠BAC=90°,AB=AC.在平面內(nèi)任取一點(diǎn)D,連結(jié)AD(AD<AB),將線段AD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到線段AE,連結(jié)DE,CE,BD.
(1)請根據(jù)題意補(bǔ)全圖1;
(2)猜測BD和CE的數(shù)量關(guān)系并證明;
(3)作射線BD,CE交于點(diǎn)P,把△ADE繞點(diǎn)A旋轉(zhuǎn),當(dāng)∠EAC=90°,AB=2,AD=1時(shí),補(bǔ)全圖形,直接寫出PB的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知中,,,點(diǎn)為的中點(diǎn),如果點(diǎn)在線段上以的速度由點(diǎn)向點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)在線段上由點(diǎn)向點(diǎn)運(yùn)動(dòng).
(1)若點(diǎn)與點(diǎn)的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,與是否全等?請說明理由;
(2)若點(diǎn)與點(diǎn)的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)的運(yùn)動(dòng)速度為多少時(shí),能使與全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三角形紙片ABC,AB=AC,∠BAC=90°,點(diǎn)E為AB中點(diǎn).沿過點(diǎn)E的直線折疊,使點(diǎn)B與點(diǎn)A重合,折痕現(xiàn)交于點(diǎn)F.已知EF=cm, 則BC的長是_______________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn).
(1)求一次函數(shù)的解析式;
(2)根據(jù)圖象直接寫出kx+b-<0時(shí)x的取值范圍;
(3)求△AOB的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,四邊形ABCD中,AD∥BC,∠B=90°,AD=AB=4,BC=7,點(diǎn)E在BC上,將△CDE沿DE折疊,點(diǎn)C恰好落在AB邊上的點(diǎn)F處.
(1)求線段DC的長度;
(2)求△FED的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知⊙O的半徑為1,等腰直角三角形ABC的頂點(diǎn)B的坐標(biāo)為(,0),CAB=90°, AC=AB,頂點(diǎn)A在⊙O上運(yùn)動(dòng).
(1)設(shè)點(diǎn)A的橫坐標(biāo)為x,△ABC的面積為S,求S與x之間的函數(shù)關(guān)系式,并求出S的最大值與最小值;(2)當(dāng)直線AB與⊙O相切時(shí),求AB所在直線對應(yīng)的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+的圖象與反比例函數(shù)y=(k>0)的圖象交于A,B兩點(diǎn),過A點(diǎn)作x軸的垂線,垂足為M,△AOM面積為1.
(1)求反比例函數(shù)的解析式;
(2)在y軸上求一點(diǎn)P,使PA+PB的值最小,并求出其最小值和P點(diǎn)坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com