(2013•賀州)已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,給出以下結(jié)論:①b2>4ac;②abc>0;③2a-b=0;④8a+c<0;⑤9a+3b+c<0,其中結(jié)論正確的是
①②⑤
①②⑤
.(填正確結(jié)論的序號)
分析:由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)對稱軸及拋物線與x軸交點情況進行推理,進而對所得結(jié)論進行判斷.
解答:解:①由圖知:拋物線與x軸有兩個不同的交點,則△=b2-4ac>0,∴b2>4ac,故①正確;
②拋物線開口向上,得:a>0;
拋物線的對稱軸為x=-
b
2a
=1,b=-2a,故b<0;
拋物線交y軸于負半軸,得:c<0;
所以abc>0;
故②正確;
③∵拋物線的對稱軸為x=-
b
2a
=1,b=-2a,
∴2a+b=0,故2a-b=0錯誤;
④根據(jù)②可將拋物線的解析式化為:y=ax2-2ax+c(a≠0);
由函數(shù)的圖象知:當x=-2時,y>0;即4a-(-4a)+c=8a+c>0,故④錯誤;
⑤根據(jù)拋物線的對稱軸方程可知:(-1,0)關于對稱軸的對稱點是(3,0);
當x=-1時,y<0,所以當x=3時,也有y<0,即9a+3b+c<0;故⑤正確;
所以這結(jié)論正確的有①②⑤.
故答案為:①②⑤.
點評:此題主要考查了圖象與二次函數(shù)系數(shù)之間的關系,會利用對稱軸的范圍求2a與b的關系,以及二次函數(shù)與方程之間的轉(zhuǎn)換,根的判別式的熟練運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2013•賀州)如圖,小明在樓上點A處測量大樹的高,在A處測得大樹頂部B的仰角為25°,測得大樹底部C的俯角為45°.已知點A距地面的高度AD為12m,求大樹的高度BC.(最后結(jié)果精確到0.1)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•賀州)已知:⊙O的直徑為3,線段AC=4,直線AC和PM分別與⊙O相切于點A,M.
(1)求證:點P是線段AC的中點;
(2)求sin∠PMC的值.

查看答案和解析>>

同步練習冊答案