已知直線(xiàn)y=
3
x+4
3
與x軸、y軸分別交于A、B兩點(diǎn),∠ABC=60°,BC與x軸交于精英家教網(wǎng)點(diǎn)C.
(1)試確定直線(xiàn)BC的解析式.
(2)若動(dòng)點(diǎn)P從A點(diǎn)出發(fā)沿AC向點(diǎn)C運(yùn)動(dòng)(不與A、C重合),同時(shí)動(dòng)點(diǎn)Q從C點(diǎn)出發(fā)沿CBA向點(diǎn)A運(yùn)動(dòng)(不與C、A重合),動(dòng)點(diǎn)P的運(yùn)動(dòng)速度是每秒1個(gè)單位長(zhǎng)度,動(dòng)點(diǎn)Q的運(yùn)動(dòng)速度是每秒2個(gè)單位長(zhǎng)度.設(shè)△APQ的面積為S,P點(diǎn)的運(yùn)動(dòng)時(shí)間為t秒,求S與t的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍.
(3)在(2)的條件下,當(dāng)△APQ的面積最大時(shí),y軸上有一點(diǎn)M,平面內(nèi)是否存在一點(diǎn)N,使以A、Q、M、N為頂點(diǎn)的四邊形為菱形?若存在,請(qǐng)直接寫(xiě)出N點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
分析:(1)由已知得A點(diǎn)坐標(biāo),通過(guò)OA,OB長(zhǎng)度關(guān)系,求得角BAO為60度,即能求得點(diǎn)C坐標(biāo),設(shè)直線(xiàn)BC代入BC兩點(diǎn)即求得.
(2)當(dāng)P點(diǎn)在AO之間運(yùn)動(dòng)時(shí),作QH⊥x軸.再求得QH,從而求得三角形APQ的面積.
(3)由(2)所求可知,是存在的,寫(xiě)出點(diǎn)的坐標(biāo).
解答:精英家教網(wǎng)解:(1)由已知得A點(diǎn)坐標(biāo)(-4﹐0),B點(diǎn)坐標(biāo)(0﹐4
3
﹚,
∵OB=
3
OA,
∴∠BAO=60°,
∵∠ABC=60°,
∴△ABC是等邊三角形,
∵OC=OA=4,
∴C點(diǎn)坐標(biāo)﹙4,0﹚,
設(shè)直線(xiàn)BC解析式為y=kx﹢b,
b=4
3
4k+b=0
,
k=-
3
b=4
3
,精英家教網(wǎng)
∴直線(xiàn)BC的解析式為y=-
3
x+4
3
;(2分)

﹙2﹚當(dāng)P點(diǎn)在AO之間運(yùn)動(dòng)時(shí),作QH⊥x軸.
QH
OB
=
CQ
CB
,
QH
4
3
=
2t
8
,
∴QH=
3
t
∴S△APQ=
1
2
AP•QH=
1
2
t•
3
t=
3
2
t2﹙0<t≤4﹚,(2分)
同理可得S△APQ=
1
2
t•﹙8
3
-
3
t
﹚=-
3
2
t2+4
3
t
﹙4≤t<8﹚;(2分)

(3)存在,如圖當(dāng)Q與B重合時(shí),四邊形AMNQ為菱形,此時(shí)N坐標(biāo)為(4,0)
其它類(lèi)似還有(-4,8)或(-4,-8)或(-4,
8
3
3
).(4分)
點(diǎn)評(píng):本題考查了一次函數(shù)的運(yùn)用,考查了一次函數(shù)與直線(xiàn)交點(diǎn)坐標(biāo),從而求得AB的長(zhǎng)度,由△ABC是等邊三角形,從而求得.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知直線(xiàn)y=-3x+m和雙曲線(xiàn)y=
k
x
在直角坐標(biāo)系中的位置如圖所示,下列結(jié)論:①k>0,②m>0,③k<0,④m<0.其中正確的是( 。
A、①②B、②③C、③④D、①④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)y=3x-2與兩條坐標(biāo)軸圍成的三角形面積是( 。
A、-
2
3
B、
2
3
C、
3
2
D、-
3
2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知直線(xiàn)y=-
3
x+
3
與x軸交于點(diǎn)A,與y軸交于點(diǎn)B,C是x軸上一點(diǎn),如果∠ABC=∠ACB,
求:(1)點(diǎn)C的坐標(biāo);
(2)圖象經(jīng)過(guò)A、B、C三點(diǎn)的二次函數(shù)的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線(xiàn)y1=kx+b經(jīng)過(guò)點(diǎn)P(5,3),且分別與已知直線(xiàn)y2=3x交于點(diǎn)A、與x軸交于精英家教網(wǎng)點(diǎn)B.設(shè)點(diǎn)A的橫坐標(biāo)為m(m>1且m≠5).
(1)用含m的代數(shù)式表示k;
(2)寫(xiě)出△AOB的面積S關(guān)于m的函數(shù)解析式;
(3)在直線(xiàn)y2=3x上是否存在點(diǎn)A,使得△AOB面積最?若存在,請(qǐng)求出點(diǎn)A的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知直線(xiàn)y=-
3
x+2
3
交x軸于點(diǎn)A,交y軸于點(diǎn)B,過(guò)B點(diǎn)的直線(xiàn)y=x+n交x軸于點(diǎn)C.精英家教網(wǎng)
(1)求C點(diǎn)的坐標(biāo);
(2)若將△OBC沿y軸翻折,C點(diǎn)落在x軸上的D點(diǎn),過(guò)D作DE⊥BA垂足為E,過(guò)C作CF⊥BA垂足為F,交BO于G,試說(shuō)明AE與FG的數(shù)量關(guān)系;
(3)以A點(diǎn)為圓心,以AB為半徑作⊙A交x軸負(fù)半軸于點(diǎn)H,交x軸正半軸于點(diǎn)P,BA的延長(zhǎng)線(xiàn)交⊙A于M,在
PM
上存在任一點(diǎn)Q,連接MQ并延長(zhǎng)交x軸于點(diǎn)N,連接HQ交BM于S,現(xiàn)有兩個(gè)結(jié)論 ①AN+AS的值不變; ②AN-AS的值不變,其中只有一個(gè)正確,請(qǐng)選擇正確的結(jié)論進(jìn)行證明,并求其值.
精英家教網(wǎng)

查看答案和解析>>

同步練習(xí)冊(cè)答案