如圖,在△ABC中,AB=BC,P為AB邊上一點,連接CP,以PA、PC為鄰邊作?APCD,AC與PD相交于點E,已知∠ABC=∠AEP=α(0°<α<90°).
(1)求證:∠EAP=∠EPA;
(2)?APCD是否為矩形?請說明理由.

證明:(1)在△ABC和△AEP中
∵∠ABC=∠AEP,∠BAC=∠EAP
∴∠ACB=∠APE
∵在△ABC中,AB=BC,
∴∠ACB=∠BAC,
∵∠ABC+∠ACB+∠CAB=180°,∠AEP+∠EAP+∠EPA=180°,
∴∠EPA=∠EAP.

(2)解:平行四邊形APCD是矩形.
∵四邊形APCD是平行四邊形,
∴AC=2EA,PD=2EP,
∵由(1)知∠EPA=∠EAP,
∴EA=EP,
∴AC=PD,
∴平行四邊形APCD是矩形.
分析:(1)利用等腰三角形的性質可知∠ACB=∠CAB,再由三角形內(nèi)角和定理即可證出∠AEP=∠EAP;
(2)利用對角線相等的平行四邊形是矩形進行判定.
點評:本題考查了矩形的判定,平行四邊形的性質,三角形的內(nèi)角和定理,等腰三角形的性質和判定的綜合運用.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習冊答案