已知△ABC與△A1B1C1的相似比為2:3,△A1B1C1與△A2B2C2的相似比為3:5,那么△ABC與△A2B2C2的相似比為   
【答案】分析:根據(jù)相似三角形的相似比寫出對應(yīng)邊的比,計算出A1B1與A2B2的比值,也就是兩三角形的相似比.
解答:解:∵△ABC與△A1B1C1的相似比為2:3,△A1B1C1與△A2B2C2的相似比為3:5,
∴AB:A1B1=2:3,A1B1:A2B2=3:5,
設(shè)AB=2x,則A1B1=3x,A2B2=5x,
∴AB:A2B2=2:5,
∴△ABC與△A2B2C2的相似比為2:5.
點評:本題利用了相似三角形的性質(zhì):相似三角形的對應(yīng)邊成比例.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

13、已知△ABC∽△A1B1C1,頂點A、B、C分別與A1、B1、C1對應(yīng),若∠A=40°,∠C=60°,則∠B1=
80
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

22、如圖,已知△ABC的三個頂點坐標(biāo)為A(0,-2)、B(3,-1)、C(2,1).
(1)在網(wǎng)格圖中,畫出△ABC以點B為位似中心,放大到2倍后的位似△A1BC1;
(2)寫出A1、C1的坐標(biāo)(其中A1與A對應(yīng)、C1與C對應(yīng)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

12、已知△ABC∽△A1B1C1,頂點A、B、C分別與A1、B1、C1對應(yīng),AB:A1B1=3:5,BE、B1E1分別是它們的對應(yīng)中線,則BE:B1E1=
3:5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:閱讀理解

(2012•西城區(qū)二模)閱讀下列材料
小華在學(xué)習(xí)中發(fā)現(xiàn)如下結(jié)論:
如圖1,點A,A1,A2在直線l上,當(dāng)直線l∥BC時,S△ABC=SA1BC=SA2BC
請你參考小華的學(xué)習(xí)經(jīng)驗畫圖(保留畫圖痕跡):
(1)如圖2,已知△ABC,畫出一個等腰△DBC,使其面積與△ABC面積相等;
(2)如圖3,已知△ABC,畫出兩個Rt△DBC,使其面積與△ABC面積相等(要求:所畫的兩個三角形不全等);
(3)如圖4,已知等腰△ABC中,AB=AC,畫出一個四邊形ABDE,使其面積與△ABC面積相等,且一組對邊DE=AB,另一組對邊BD≠AE,對角∠E=∠B.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC與△A1B1C1相似,頂點A、B、C的對應(yīng)點分別是A1、B1、C1,∠A=55°,∠B=100°,則∠C1的度數(shù)是( 。

查看答案和解析>>

同步練習(xí)冊答案