如圖,在△ABC中,AC=6,AB=12,cosA=
35
,點M在AB上運動,MP∥AC交BC于P,MQ⊥AC于Q,設(shè)AM=x,梯形MPCQ的面積為y.
(1)求y關(guān)于x的函數(shù)表達式及自變量x的取值范圍;
(2)當(dāng)梯形MPCQ的面積為4時,求x的值;
(3)梯形MPCQ的面積是否有最大值,如果有,求出最大值;如果沒有,請說明理由.
分析:(1)首先過點C作CK⊥AB于K,由在△ABC中,AC=6,AB=12,cosA=
3
5
,即可求得△ABC的高CK,繼而求得△ABC的面積,又由MQ⊥AC,設(shè)AM=x,即可表示出△AMQ的面積,然后由MP∥AC,可得△BPM∽△BCA,根據(jù)相似三角形的面積比等于相似比的平方,表示出△BPM的面積,由y=S梯形MPCQ=S△ABC-S△AMQ-S△BPM,即可求得y關(guān)于x的函數(shù)表達式及自變量x的取值范圍;
(2)根據(jù)(1),由y=4,列方程即可求得x的值;
(3)根據(jù)(1),利用配方法,根據(jù)二次函數(shù)的最值問題,即可求得答案.
解答:解:(1)過點C作CK⊥AB于K,
∵在△ABC中,AC=6,AB=12,cosA=
3
5
,
AK
AC
=
3
5
,
∴AK=
18
5

∴CK=
24
5
,
∴S△ABC=
1
2
AB•CK=
1
2
×12×
24
5
=
144
5
,
∵AM=x,MQ⊥AC于Q,
∴AQ=AM•cosA=
3
5
x,
∴QM=
4
5
x,
∴S△AMQ=
1
2
AQ•MQ=
1
2
×
3
5
4
5
x=
6
25
x2
∵MP∥AC,
∴△BPM∽△BCA,
S△BPM
S△BCA
=(
BM
AB
2=(
12-x
12
2
∴S△BPM=
(12-x)2
5
,
∴y=S梯形MPCQ=S△ABC-S△AMQ-S△BPM=
144
5
-
6
25
x2-
(12-x)2
5
=-
11
25
x2+
24
5
x,
∴y關(guān)于x的函數(shù)表達式為:y=-
11
25
x2+
24
5
x,自變量x的取值范圍為:(0<x<10);

(2)若y=4,
則-
11
25
x2+
24
5
x=4,
解得:x1=
10
11
,x2=10(舍去),
∴x的值為:
10
11
;

(3)有.
理由:∵y=-
11
25
x2+
24
5
x=-
11
25
(x-
60
11
2+
144
11

∴當(dāng)x=
60
11
時,y最大,最大值為:
144
11
,
∴梯形MPCQ的面積有最大值為:
144
11
點評:此題考查了二次函數(shù)的綜合應(yīng)用問題,考查了相似三角形的判定與性質(zhì),直角三角形的性質(zhì),三角函數(shù)等知識.此題綜合性很強,難度較大,解題的關(guān)鍵是注意數(shù)形結(jié)合思想與方程思想的應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

20、如圖,在△ABC中,∠BAC=45°,現(xiàn)將△ABC繞點A逆時針旋轉(zhuǎn)30°至△ADE的位置,使AC⊥DE,則∠B=
75
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,∠ACB=90°,AC=BC=1,取斜邊的中點,向斜邊作垂線,畫出一個新的等腰三角形,如此繼續(xù)下去,直到所畫出的直角三角形的斜邊與△ABC的BC重疊,這時這個三角形的斜邊為
( 。
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

2、如圖,在△ABC中,DE∥BC,那么圖中與∠1相等的角是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

14、如圖,在△ABC中,AB=BC,邊BC的垂直平分線分別交AB、BC于點E、D,若BC=10,AC=6cm,則△ACE的周長是
16
cm.

查看答案和解析>>

同步練習(xí)冊答案