閱讀理解:配方法是中學數(shù)學的重要方法,用配方法可求最大(。┲怠

對于任意正實數(shù)a、b,可作如下變形a+b==-+=+ ,

又∵≥0, ∴+ ≥0+,即

(1)根據(jù)上述內(nèi)容,回答下列問題:在a、b均為正實數(shù))中,若ab為定值p,則a+b,當且僅當a、b滿足    時,a+b有最小值

(2)思考驗證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b, 試根據(jù)圖形驗證成立,并指出等號成立時的條件.

 (3)探索應用:如圖2,已知A為反比例函數(shù)的圖像上一點,A點的橫坐標為1,將一塊三角板的直角頂點放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點D、E,F(xiàn)(0,-3)為y軸上一點,連結(jié)DF、EF,求四邊形ADFE面積的最小值.


解:(1)a=b

(2)有已知得CO=a+b,CD=2,CO≥CD,即≥2.當D與O重合時或a=b時,等式成立。

(3),當DE最小時S四邊形ADFE最小.

過A作AH⊥x軸,由(2)知:當DH=EH時,DE最小,所以DE最小值為8,此時S四邊形ADFE=(4+3)=28


練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:


)如圖,折疊長方形的一邊,使點 落在邊上的點處,,求:(1)的長;(2)的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


已知,拋物線經(jīng)過A(-1,0),C(2,)兩點,

x軸交于另一點B

(1)求此拋物線的解析式;

(2)若拋物線的頂點為M,點P為線段OB上一動點 (不與點B重合),點Q在線段MB上移動,且∠MPQ=45°,設(shè)線段OP=x,MQ=,求y2x的函數(shù)關(guān)系式,

并直接寫出自變量x的取值范圍.

 


查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


關(guān)于二次函數(shù),以下結(jié)論:① 拋物線交軸有兩個不同的交點;②不論k取何值,拋物線總是經(jīng)過一個定點;③設(shè)拋物線交軸于A、B兩點,若AB=1,則k=9;;④ 拋物線的頂點在圖像上.其中正確的序號是(    )

A.①②③④       B.②③       C.②④      D.①②④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


如圖,已知⊙O是正方形ABCD的外接圓,點E是上任意一點,則∠BEC       的度數(shù)為 (    )

A. 30°        B. 45°        C. 60°         D. 90°

 


查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


分解因式x(x+4)+4的結(jié)果             

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


一次函數(shù),若的增大而增大,則的值可以是(    )

(A)1       (B)2      (C)3      (D)4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:


在直角坐標系中,O為坐標原點,點A的坐標為(2,2),點C是線段OA上的一個動點(不運動至O,A兩點),過點C作CD⊥x軸,垂足為D,以CD為邊在右側(cè)作正方形CDEF. 連接AF并延長交x軸的正半軸于點B,連接OF,設(shè)OD=t.

⑴tan∠FOB=           ;

⑵ 已知二次函數(shù)圖像 經(jīng)過O、C、F三點,求二次函數(shù)的解析式;

⑶ 當t為何值時以B,E,F(xiàn)為頂點的三角形與△OFE相似.

查看答案和解析>>

同步練習冊答案