閱讀理解:配方法是中學數(shù)學的重要方法,用配方法可求最大(。┲怠
對于任意正實數(shù)a、b,可作如下變形a+b==-+=+ ,
又∵≥0, ∴+ ≥0+,即≥.
(1)根據(jù)上述內(nèi)容,回答下列問題:在≥(a、b均為正實數(shù))中,若ab為定值p,則a+b≥,當且僅當a、b滿足 時,a+b有最小值.
(2)思考驗證:如圖1,△ABC中,∠ACB=90°,CD⊥AB,垂足為D,CO為AB邊上中線,AD=2a,DB=2b, 試根據(jù)圖形驗證≥成立,并指出等號成立時的條件.
(3)探索應用:如圖2,已知A為反比例函數(shù)的圖像上一點,A點的橫坐標為1,將一塊三角板的直角頂點放在A處旋轉(zhuǎn),保持兩直角邊始終與x軸交于兩點D、E,F(xiàn)(0,-3)為y軸上一點,連結(jié)DF、EF,求四邊形ADFE面積的最小值.
科目:初中數(shù)學 來源: 題型:
已知,拋物線經(jīng)過A(-1,0),C(2,)兩點,
與x軸交于另一點B.
(1)求此拋物線的解析式;
(2)若拋物線的頂點為M,點P為線段OB上一動點 (不與點B重合),點Q在線段MB上移動,且∠MPQ=45°,設(shè)線段OP=x,MQ=,求y2與x的函數(shù)關(guān)系式,
并直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
關(guān)于二次函數(shù),以下結(jié)論:① 拋物線交軸有兩個不同的交點;②不論k取何值,拋物線總是經(jīng)過一個定點;③設(shè)拋物線交軸于A、B兩點,若AB=1,則k=9;;④ 拋物線的頂點在圖像上.其中正確的序號是( )
A.①②③④ B.②③ C.②④ D.①②④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
如圖,已知⊙O是正方形ABCD的外接圓,點E是上任意一點,則∠BEC 的度數(shù)為 ( )
A. 30° B. 45° C. 60° D. 90°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
在直角坐標系中,O為坐標原點,點A的坐標為(2,2),點C是線段OA上的一個動點(不運動至O,A兩點),過點C作CD⊥x軸,垂足為D,以CD為邊在右側(cè)作正方形CDEF. 連接AF并延長交x軸的正半軸于點B,連接OF,設(shè)OD=t.
⑴tan∠FOB= ;
⑵ 已知二次函數(shù)圖像 經(jīng)過O、C、F三點,求二次函數(shù)的解析式;
⑶ 當t為何值時以B,E,F(xiàn)為頂點的三角形與△OFE相似.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com