(2004•云南)不等式組的解集是( )
A.x>1
B.x<6
C.1<x<6
D.x<1或x>6
【答案】分析:先分別求出各不等式的解集,再求其公共解集即可.
解答:解:由(1)得x>1,
由(2)得x<6
根據(jù)“小大大小中間找”的原則可知:不等式組的解集為1<x<6.
故選C.
點評:求不等式組的解集應(yīng)遵循“同大取較大,同小取較小,小大大小中間找,大大小小解不了”的原則.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2000年全國中考數(shù)學(xué)試題匯編《分式方程》(01)(解析版) 題型:選擇題

(2004•云南)一組學(xué)生去春游,預(yù)計共需費用120元,后來又有2個參加進來,總費用不變,于是每人可少分攤3元,原來這組學(xué)生人數(shù)是( )
A.15人
B.10人
C.12人
D.8人

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《數(shù)據(jù)分析》(03)(解析版) 題型:解答題

(2004•云南)某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計了這15人某月的銷售量如下:
每人銷售件數(shù)1800510250210150120
人數(shù)113532
(1)求這15位營銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù);
(2)假設(shè)銷售負責(zé)人把每位營銷員的月銷售額定為320件,你認為是否合理,為什么?如不合理,請你制定一個較合理的銷售定額,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2002年全國中考數(shù)學(xué)試題匯編《圓》(14)(解析版) 題型:解答題

(2004•云南)某學(xué)習(xí)小組在探索“各內(nèi)角都相等的圓內(nèi)接多邊形是否為正多邊形”時,進行如下討論:
甲同學(xué):這種多邊形不一定是正多邊形,如圓內(nèi)接矩形.
乙同學(xué):我發(fā)現(xiàn)邊數(shù)是6時,它也不一定是正多邊形,如圖1,△ABC是正三角形,,證明六邊形ADBECF的各內(nèi)角相等,但它未必是正六邊形.
丙同學(xué):我能證明,邊數(shù)是5時,它是正多邊形,我想…,邊數(shù)是7時,它可能也是正多邊形.
(1)請你說明乙同學(xué)構(gòu)造的六邊形各內(nèi)角相等;
(2)請你證明,各內(nèi)角都相等的圓內(nèi)接七邊形ABCDEFG(如圖2)是正七邊形;(不必寫已知,求證)
(3)根據(jù)以上探索過程,提出你的猜想.(不必證明)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年全國中考數(shù)學(xué)試題匯編《銳角三角函數(shù)》(06)(解析版) 題型:解答題

(2004•云南)如圖,已知MN表示某引水工程的一段設(shè)計路線,從M到N的走向為南偏東30°,在M的南偏東60°方向上有一點A,以A為圓心,500m為半徑的圓形區(qū)域為居民區(qū),取MN上另一點B,測得BA的方向為南偏東75°,已知MB=400m,通過計算回答,如果不改變方向,輸水線路是否會穿過居民區(qū)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2004年云南省中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•云南)某住宅小區(qū),為美化環(huán)境,提高居民區(qū)生活質(zhì)量,要建一個八邊形居民廣場(平面圖如圖所示),其中,正方形MNPQ與四個相同矩形(圖中陰影部分)的面積的和為800平方米.
(1)設(shè)矩形的邊長AB=x(米),AM=y(米),用含x的代數(shù)式表示y;
(2)現(xiàn)計劃在正方形區(qū)域上建雕塑和花壇,平均每平方米造價為2100元,在四個相同的矩形區(qū)域上鋪設(shè)花崗巖地坪,平均每平方米造價為105元,在四個三角形區(qū)域上鋪設(shè)草坪,平均每平方米造價為40元.
①設(shè)該工程的總造價為S(元),求S關(guān)于x的函數(shù)關(guān)系式;
②若該工程的銀行貸款為235000元,問僅靠銀行貸款能否完成該工程的建設(shè)任務(wù)?若能,請列出設(shè)計方案;若不能請說明理由;
③若該工程在銀行貸款的基礎(chǔ)上,又增加獎金73000元,問能否完成該工程的建設(shè)任務(wù)?若能,請列出所有可能的設(shè)計方案;若不能,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案