【題目】如圖,正方形ABCD的邊長(zhǎng)為13,以CD為斜邊向外作Rt△CDE,若點(diǎn)A到CE的距離為17,則CE=

【答案】12或5
【解析】當(dāng)CE>DE時(shí),
過(guò)點(diǎn)A作AF⊥CE,過(guò)點(diǎn)D作DG⊥AF,連接AC,則AF=17,
CF= =7.
∵AF⊥CE,DG⊥AF,DE⊥CE,
∴四邊形DEGF是矩形,
∴∠EDG=90°,
則∠CDE+∠CDG=90°,
又∵∠ADG+∠CDG=90°,
∴∠CDE=∠ADG,
又∵AD=CD,∠AGD=∠CED=90°,
∴△AGD≌△CED,
∴GD=ED,
∴矩形DEFG是正方形,
∴FG=DE=EF,
設(shè)FG=DE=EF=x,
由勾股定理得CE2+DE2=CD2 ,
則(7+x)2+x2=132,
解得x=5,
則CE=7=5=12;
當(dāng)DE>CE時(shí),同理可得CE=5.
故答案為12可5.

需要分類討論DE與CE的長(zhǎng)度大;再作如圖所示的圖,易求得CF的長(zhǎng),再通過(guò)證明△AGD≌△CED,最后得到FG=DE=EF,由勾股定理構(gòu)造方程解出DE的長(zhǎng)即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用適當(dāng)方法解下列方程
(1)x(x+4)=8x+12
(2)(x+3)2=25(x﹣1)2
(3)(x+1)(x+8)=﹣12
(4)x4﹣x2﹣6=0.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,⊙O與直線l1相離,圓心O到直線l1的距離OB=2 ,OA=4,將直線l1繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)30°后得到的直線l2剛好與⊙O相切于點(diǎn)C,則OC=

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AB為⊙O直徑,以O(shè)A為直徑作⊙M.過(guò)B作⊙M得切線BC,切點(diǎn)為C,交⊙O于E.
(1)在圖中過(guò)點(diǎn)B作⊙M作另一條切線BD,切點(diǎn)為點(diǎn)D(用尺規(guī)作圖,保留作圖痕跡,不寫作法,不用證明);
(2)證明:∠EAC=∠OCB;
(3)若AB=4,在圖2中過(guò)O作OP⊥AB交⊙O于P,交⊙M的切線BD于N,求BN的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】2013年9月23日強(qiáng)臺(tái)風(fēng)“天兔”登錄深圳,伴隨著就是狂風(fēng)暴雨梧桐山山坡上有一棵與水平面垂直的大樹(shù),臺(tái)風(fēng)過(guò)后,大樹(shù)被刮傾斜后折斷倒在山坡上,樹(shù)的頂部恰好接觸到坡面(如圖所示).已知山坡的坡角∠AEF=23°,量得樹(shù)干的傾斜角為∠BAC=38°,大樹(shù)被折斷部分和坡面所成的角∠ADC=60°,AD=3m.

(1)求∠DAC的度數(shù);
(2)求這棵大樹(shù)折斷前的高度?(結(jié)果保留根號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,OA,OB是⊙O的兩條半徑,OA⊥OB,C是半徑OB上一動(dòng)點(diǎn),連結(jié)AC并延長(zhǎng)交⊙O于D,過(guò)點(diǎn)D作圓的切線交OB的延長(zhǎng)線于E,已知OA=8.

(1)求證:∠ECD=∠EDC;
(2)若tanA= ,求DE長(zhǎng);
(3)當(dāng)∠A從15°增大到30°的過(guò)程中,求弦AD在圓內(nèi)掃過(guò)的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是一輛小汽車與墻平行停放的平面示意圖,汽車靠墻一側(cè)與墻MN平行且距離為0.8米,已知小汽車車門寬AO為1.2米,當(dāng)車門打開(kāi)角度∠AOB為40°時(shí),車門是否會(huì)碰到墻?請(qǐng)說(shuō)明理由。(參考數(shù)據(jù):sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在四邊形ABCD中,AD∥BC,∠C=90°,E為CD上一點(diǎn),分別以EA,EB為折痕將兩個(gè)角(∠D,∠C)向內(nèi)折疊,點(diǎn)C,D恰好落在AB邊的點(diǎn)F處.若AD=2,BC=3,則EF的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點(diǎn)P是△ABC邊上一動(dòng)點(diǎn),沿B→A→C的路徑移動(dòng),過(guò)點(diǎn)P作PD⊥BC于點(diǎn)D,設(shè)BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關(guān)系的圖象是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案