(2003•廣州)如圖,在菱形ABCD中,∠ABC=60°,AC=4,則BD的長為( )

A.
B.
C.
D.8
【答案】分析:由題可知,在直角三角形BOA中,∠ABO=30°,AO=AC=2,根據(jù)勾股定理可求BO,BD=2BO.
解答:解:在菱形ABCD中,AC、BD是對角線,設(shè)相交于O點.
∴AC⊥BD,AC=4,
∴AO=2.
∵∠ABC=60°,
∴∠ABO=30°.
由勾股定理可知:BO=2
則BD=4
故選B.
點評:此題不但考查了直角三角形的邊角關(guān)系,還考查了菱形的性質(zhì).
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《銳角三角函數(shù)》(02)(解析版) 題型:選擇題

(2003•廣州)如圖,在菱形ABCD中,∠ABC=60°,AC=4,則BD的長為( )

A.
B.
C.
D.8

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圓》(11)(解析版) 題型:解答題

(2003•廣州)如圖,已知△ABC內(nèi)接于⊙O,直線DE與⊙O相切于點A,BD∥CA,求證:AB•DA=BC•BD.

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圓》(05)(解析版) 題型:選擇題

(2003•廣州)如圖,在△ABC中,∠C=90°,AC>BC,若以AC為底面圓半徑、BC為高的圓錐的側(cè)面積為S1,以BC為底面圓半徑、AC為高的圓錐的側(cè)面積為S2,則( )

A.S1=S2
B.S1>S2
C.S1<S2
D.S1、S2的大小關(guān)系不確定

查看答案和解析>>

科目:初中數(shù)學 來源:2003年全國中考數(shù)學試題匯編《圓》(01)(解析版) 題型:選擇題

(2003•廣州)如圖,A是半徑為5的⊙O內(nèi)一點,且OA=3,過點A且長小于8的弦有( )

A.0條
B.1條
C.2條
D.4條

查看答案和解析>>

科目:初中數(shù)學 來源:2003年廣東省廣州市中考數(shù)學試卷(解析版) 題型:填空題

(2003•廣州)如圖,∠E=∠F=90°,∠B=∠C,AE=AF,給出下列結(jié)論:(1)∠1=∠2;(2)BE=CF;(3)△ACN≌△ABM;(4)CD=DN,其中正確的結(jié)論是   
(注:將你認為正確的結(jié)論都填上).

查看答案和解析>>

同步練習冊答案