已知:如圖,拋物線y=-
3
3
x2+mx+
3
與x軸交于A、B兩點,與y軸交于點C,A點坐標為(-1,0)
(1)求m的值和點B的坐標;
(2)過A、B、C的三點的⊙M交y軸于另一點D,設P為弧CBD上的動點P(P不與C、D重合),連接AP交y軸于點H,問是否存在一個常數(shù)k,始終滿足AH•AP=k?如果存在,請求出常數(shù)k;如果不存在,請說明理由;
(3)連接DM并延長交BC于N,交⊙M于點E,過E點的⊙M的切線分別交x軸、y軸于點F、G,試探究BC與FG的位置關系,并求直線FG的解析式.
(1)將A(-1,0)代入解析式y=-
3
3
x2+mx+
3
,
解得m=
2
3
3

令y=0,即-
3
3
x2+
2
3
3
x+
3
=0

解得x1=-1,x2=3,
因此B點坐標為(3,0);

(2)如圖,假設存在常數(shù)k,滿足AH•AP=k
連接CP,由垂徑定理可知,
∴∠P=∠ACH(或利用∠P=∠ABC=∠ACO),
又∵∠CAH=∠PAC,
∴△ACH△APC,
AC
AH
=
AP
AC
,
∴即AC2=AH•AP,
在Rt△AOC中,AC2=AO2+OC2=12+(
3
2=4,
∴AH•AP=k=4;
(3)由A(-1,0),B(3,0)C(0,
3

根據(jù)圓的對稱性,易知:⊙M半徑為2,
M( 1,0)D(0,-
3
),
在Rt△DOM中,∠DOM=90°,OM=1,OD=
3
,
∴∠MDO=30°,
易得∠MFG=30°,在Rt△DGE中,∠GDE=30°,DE=4,
∴DG=
8
3
3
,OG=
5
3
3

∴G點的坐標為(0,
5
3
3

在Rt△GOF中∠OFG=30°,OG=
5
3
3
,
∴OF=5,
∴F點的坐標為(5,0)
∴直線FG的解析式為y=-
3
3
x+
5
3
3
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:直角梯形OABC中,BCOA,∠AOC=90°,以AB為直徑的圓M交OC于D、E,連接AD、BD.直角梯形OABC中,以O為坐標原點,A在x軸正半軸上建立直角坐標系,若拋物線y=ax2-2ax-3a(a<0)經(jīng)過點A、B、D,且B為拋物線的頂點.
①寫出頂點B的坐標(用a的代數(shù)式表示)______.
②求拋物線的解析式.
③在x軸下方的拋物線上是否存在這樣的點P:過點P做PN⊥x軸于N,使得△PAN與△OAD相似?若存在,求出點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

拋物線y=ax2+bx+c(a≠0)過點A(1,-3),B(3,-3),C(-1,5),頂點為M點.
(1)求該拋物線的解析式.
(2)試判斷拋物線上是否存在一點P,使∠POM=90°.若不存在,說明理由;若存在,求出P點的坐標.
(3)試判斷拋物線上是否存在一點K,使∠OMK=90°,若不存在,說明理由;若存在,求出K點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,已知拋物線y=x2+4x+3交x軸于A、B兩點,交y軸于點C,拋物線的對稱軸交x軸于點E,點B的坐標為(-1,0).
(1)求拋物線的對稱軸及點A的坐標;
(2)在平面直角坐標系xoy中是否存在點P,與A、B、C三點構成一個平行四邊形?若存在,請寫出點P的坐標;若不存在,請說明理由;
(3)連接CA與拋物線的對稱軸交于點D,在拋物線上是否存在點M,使得直線CM把四邊形DEOC分成面積相等的兩部分?若存在,請求出直線CM的解析式;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx(a>0)與雙曲線y=
k
x
相交于點A,B.已知點B的坐標為(-2,-2),點A在第一象限內,且tan∠AOx=4.過點A作直線ACx軸,交拋物線于另一點C.
(1)求雙曲線和拋物線的解析式;
(2)計算△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,某地一城墻門洞呈拋物線形,已知門洞的地面寬度AB=12米,兩側距地面5米高C、D處各安裝一盞路燈,兩燈間的水平距離CD=8米,
(1)求這個門洞的高度______;
(2)現(xiàn)有體寬均約為0.5水,身高約為1.6米的20名同學想要手挽手成一排橫向通過該城門,請你測算,他們能否通過?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,要建一個長方形養(yǎng)雞場,雞場的一邊靠墻,如果用50m長的籬笆圍成中間有一道籬笆隔墻的養(yǎng)雞場,設它的長度為xm.
(1)要使雞場面積最大,雞場的長度應為多少m?
(2)如果中間有n(n是大于1的整數(shù))道籬笆隔墻,要使雞場面積最大,雞場的長應為多少m?
比較(1)(2)的結果,你能得到什么結論?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

用長8m的鋁合金條制成如圖形狀的矩形窗框,使窗戶的透光面積最大,那么這個窗戶的最大透光面積是( 。
A.
64
25
m2
B.
4
3
m2
C.
8
3
m2
D.4m2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖所示,矩形的窗戶分成上、下兩部分,用9米長的塑鋼制作這個窗戶的窗框(包括中間檔),設窗寬x(米),則窗的面積y(平方米)用x表示的函數(shù)關系式為______;要使制作的窗戶面積最大,那么窗戶的高是______米,窗戶的最大面積是______平方米.

查看答案和解析>>

同步練習冊答案