證明定理:矩形的對(duì)角線相等.

已知:

求證:

證明:

答案:
解析:

  已知:矩形ABCD中,AC、BD為對(duì)角線.

  求證:AC=BD.

  證明:在矩形ABCD中,AB=CD,∠ABC=∠DCB=90°,又因?yàn)锽C=CB,所以△ABC≌△DCB,所以AC=BD(說(shuō)明:本題亦可用勾股定理來(lái)證明).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

15、下列定理存在逆定理的有(  )
(1)等腰梯形的兩條對(duì)角線相等;
(2)矩形的對(duì)角線相等;
(3)正方形的四個(gè)角都是直角;
(4)如果一個(gè)三角形的三邊a,b,c滿足a2+b2=c2,那么這個(gè)三角形是直角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

八年級(jí)數(shù)學(xué)學(xué)習(xí)合作小組在學(xué)過(guò)《圖形的相似》這一章后,發(fā)現(xiàn)可將相似三角形的定義、判定以及性質(zhì)拓展到矩形、菱形的相似中去.如:我們可以定義:“長(zhǎng)和寬之比相等的矩形是相似矩形.”相似矩形也有以下的性質(zhì):相似矩形的對(duì)角線之比等于相似比,周長(zhǎng)比等于相似比,面積比等于相似比的平方等等.請(qǐng)你參與這個(gè)學(xué)習(xí)小組,一同探索這類問(wèn)題:
(1)寫(xiě)出判定菱形相似的一種判定方法:若有一組角對(duì)應(yīng)相等(或兩組對(duì)角線對(duì)應(yīng)成比例),則這兩個(gè)菱形相似;
(2)如圖,將菱形ABCD沿著直線AC向右平移后得到菱形A′B′C′D′,試證明:四邊形A′FCE是菱形,且菱形ABCD∽菱形A′FCE;
(3)若AC=
2
,菱形A′FCE的面積是菱形ABCD面積的一半,求平移的距離AA′的長(zhǎng).精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

20、如圖,在4×4的正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)都是1,線段AB和CD分別是圖中1×3的兩個(gè)矩形的對(duì)角線,顯然AB∥CD,請(qǐng)你根據(jù)圖中網(wǎng)格的特征證明EA⊥AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

請(qǐng)將下面證明中每一步的理由填在括號(hào)內(nèi):
如圖,矩形ABCD的兩條對(duì)角線相交于點(diǎn)O,已知∠AOD=120°,AB=2.5cm,求矩形對(duì)角線的長(zhǎng).
解:∵四邊形ABCD是矩形,
∴AC=BD,且OA=OC=
1
2
AC
,OB=OD=
1
2
BD
矩形的對(duì)角線相等且互相平分
矩形的對(duì)角線相等且互相平分

∴OA=OD.
∵∠AOD=120°,
∠ODA=∠OAD=
180°-120°
2
=30°
等邊對(duì)等角
等邊對(duì)等角

∵∠DAB=90°
矩形的四個(gè)角都是直角
矩形的四個(gè)角都是直角

∴BD=2AB=2×2.5=5
直角三角形30°角所對(duì)的直角邊等于斜邊的一半
直角三角形30°角所對(duì)的直角邊等于斜邊的一半

查看答案和解析>>

同步練習(xí)冊(cè)答案