【題目】如圖,將兩張長為4,寬為1矩形紙條交叉并旋轉(zhuǎn),使重疊部分成為一個(gè)菱形.旋轉(zhuǎn)過程中,當(dāng)兩張紙條垂直時(shí),菱形周長的最小值是4,那么菱形周長的最大值是_____

【答案】

【解析】作出圖形,確定當(dāng)兩矩形紙條有一條對(duì)角線互相重合時(shí),菱形的周長最大,設(shè)菱形的邊長為x,表示出AB,然后利用勾股定理列式進(jìn)行計(jì)算求出x,再根據(jù)菱形的四條邊都相等解答.

解:如圖,

菱形的周長最大,
設(shè)菱形的邊長AC=x,則AB=4-x,
RtABC中,AC2=AB2+BC2,
x2=(4-x)2+12,
解得x=
所以,菱形的最大周長=×4=
故答案為:

“點(diǎn)睛”本題考查了菱形的性質(zhì),勾股定理的應(yīng)用,確定出菱形的周長最大時(shí)的位置是解題的關(guān)鍵,作出圖形更形象直觀.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知ΔABC內(nèi)接于⊙OD是⊙O上一點(diǎn),連結(jié)BDCD,ACBD交于點(diǎn)E

1)請(qǐng)找出圖中的相似三角形,并加以證明(不添加其他線條的情況下)

2)若∠D45°,BC4,求⊙O的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,AB=AC,AB的垂直平分線交邊ABD點(diǎn),交邊ACE點(diǎn),若ABCEBC的周長分別是40cm,24cm,則AB=________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】相切兩圓的半徑分別是5和3,則該兩圓的圓心距是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)P(m,﹣1)向左平移2個(gè)單位后在直線y=2x﹣3上,則m=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,在平行四邊形ABCD中,AC、BD相交于O點(diǎn),點(diǎn)E、F分別為BO、DO的中點(diǎn),連接AF,CE.

(1)求證:四邊形AECF是平行四邊形;

(2)如果E,F(xiàn)點(diǎn)分別在DB和BD的延長線上時(shí),且滿足BE=DF,上述結(jié)論仍然成立嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某件商品的成本價(jià)為15元,據(jù)市場調(diào)查得知,每天的銷量y(件)與價(jià)格x(元)有下列關(guān)系:

銷售價(jià)格x

20

25

30

50

銷售量y

15

12

10

6

(1)根據(jù)表中數(shù)據(jù),在直角坐標(biāo)系中描出實(shí)數(shù)對(duì)(x,y)的對(duì)應(yīng)點(diǎn),并畫出圖象;

(2)猜測確定y與x間的關(guān)系式;

(3)設(shè)總利潤為W元,試求出W與x之間的函數(shù)關(guān)系式,若售價(jià)不超過30元,求出當(dāng)日的銷售單價(jià)定為多少時(shí),才能獲得最大利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y=ax+b與二次函數(shù)y=ax2+bx+c在同一坐標(biāo)系中的圖像可能是 ( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圓的周長公式C=2πR中,下列說法正確的是( )

A.π、R是自變量,2是常量 B.C是因變量,R是自變量,2π為常量

C.R為自變量,2π、C為常量 D.C是自變量,R為因變量,2π為常量

查看答案和解析>>

同步練習(xí)冊(cè)答案