(2009•綿陽)如圖,在平面直角坐標系中,矩形AOBC在第一象限內(nèi),E是邊OB上的動點(不包括端點),作∠AEF=90°,使EF交矩形的外角平分線BF于點F,設C(m,n).
(1)若m=n時,如圖,求證:EF=AE;
(2)若m≠n時,如圖,試問邊OB上是否還存在點E,使得EF=AE?若存在,請求出點E的坐標;若不存在,請說明理由.
(3)若m=tn(t>1)時,試探究點E在邊OB的何處時,使得EF=(t+1)AE成立?并求出點E的坐標.
【答案】分析:(1)根據(jù)m=n,我們可得出四邊形AOBC應該是個正方形.要證EF=AE,可通過構建全等三角形來實現(xiàn),在OA上取點C,使AG=BE,則OG=OE.那么我們的目的就是證三角形ABE和EBF全等,這兩個三角形中已知的條件只有AG=BE,我們發(fā)現(xiàn)∠AGE和∠EBF都是90+45=135°,而∠GAE和∠FEB都是∠AEO的余角,那么這兩組對應角就相等,構成了三角形全等的條件,于是EF=AE了.
(2)可用反證法來求解,方法同(1)類似,也是通過構建全等三角形來求解.作FH⊥x軸于H,假設題目給出的條件成立,通過證明三角形AOE和EHF全等來得出線段相等,即AO=EH,OE=FH,根據(jù)FBH=45°,設E(a,0).那么FH=BH=OE=a,那么不難得出EH=EB+BH=OE+EB=m,又根據(jù)AO=EH,m=n,因此不存在點E.
(3)可根據(jù)相似三角形來得出線段之間的比例關系來求得.輔助線作法同(2),我們不難證得三角形AOE和FEH相似(根據(jù)同角的余角相等和一組直角即可得出相似),那么就能將EF=(t+1)AE轉換為FH=(t+1)OE,根據(jù)相似我們還可得出關于AO、EH、OE、FH的比例關系,那么就能得出一個關于OE、FH、m、n的關系式,將這式子進行化簡,即可得出OE與m、n的關系,便能求出E的坐標了.
解答:解:
(1)由題意得m=n時,AOBC是正方形.
如圖,在OA上取點G,使AG=BE,
∵正方形OACB,OA=OB,
∴OG=OE.
∴∠EGO=∠GEO=(180°-90°)=45°,從而∠AGE=90°+45°=135°.
由BF是外角平分線,得∠EBF=135°,
∴∠AGE=∠EBF.
∵∠AEF=90°,
∴∠FEB+∠AEO=90°.
在Rt△AEO中,∵∠EAO+∠AEO=90°,
∴∠EAO=∠FEB,
在△AGE和△EBF中

∴△AGE≌△EBF,
EF=AE.

(2)假設存在點E,使EF=AE.設E(a,0).作FH⊥x軸于H,如圖.
由(1)知∠EAO=∠FEH,于是Rt△AOE≌Rt△EHF.
∴FH=OE,EH=OA.
∴點F的縱坐標為a,即FH=a.
由BF是外角平分線,知∠FBH=45°,
∴BH=FH=a.
又由C(m,n)有OB=m,
∴BE=OB-OE=m-a,
∴EH=m-a+a=m.
又EH=OA=n,
∴m=n,這與已知m≠n相矛盾.
因此在邊OB上不存在點E,使EF=AE成立.

(3)如(2)圖,設E(a,0),F(xiàn)H=h,則EH=OH-OE=h+m-a.
由∠AEF=90°,∠EAO=∠FEH,得△AOE∽△EHF,
∴EF=(t+1)AE等價于FH=(t+1)OE,即h=(t+1)a,
,即,
整理得nh=ah+am-a2
∴h=
把h=(t+1)a代入得=(t+1)a,
即m-a=(t+1)(n-a).
而m=tn,因此tn-a=(t+1)(n-a).
化簡得ta=n,解得a=
∵t>1,
<n<m,
故E在OB邊上.
∴當E在OB邊上且離原點距離為處時滿足條件,此時E(,0).
點評:本題解題的關鍵是根據(jù)全等三角形的判定或相似三角形得出線段相等或成比例.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2011年湖北省黃岡市黃梅縣中考數(shù)學模擬試卷(13)(解析版) 題型:選擇題

(2009•綿陽)如圖,把一個長方形的紙片對折兩次,然后剪下一個角,把剪下的這個角展開,若得到一個銳角為60°的菱形,則剪口與折痕所成的角α的度數(shù)應為( )

A.15°或30°
B.30°或45°
C.45°或60°
D.30°或60°

查看答案和解析>>

科目:初中數(shù)學 來源:2009年全國中考數(shù)學試題匯編《相交線與平行線》(02)(解析版) 題型:填空題

(2009•綿陽)如圖,直線a∥b,l與a、b交于E、F點,PF平分∠EFD交a于P點,若∠1=70°,則∠2=    度.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年湖北省黃岡市浠水縣余堰中學中考數(shù)學模擬試卷(解析版) 題型:選擇題

(2009•綿陽)如圖,△ABC是直角邊長為a的等腰直角三角形,直角邊AB是半圓O1的直徑,半圓O2過C點且與半圓O1相切,則圖中陰影部分的面積是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年福建省莆田市中考數(shù)學仿真模擬試卷(四)(解析版) 題型:解答題

(2009•綿陽)如圖,在平面直角坐標系中,矩形AOBC在第一象限內(nèi),E是邊OB上的動點(不包括端點),作∠AEF=90°,使EF交矩形的外角平分線BF于點F,設C(m,n).
(1)若m=n時,如圖,求證:EF=AE;
(2)若m≠n時,如圖,試問邊OB上是否還存在點E,使得EF=AE?若存在,請求出點E的坐標;若不存在,請說明理由.
(3)若m=tn(t>1)時,試探究點E在邊OB的何處時,使得EF=(t+1)AE成立?并求出點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2009年四川省綿陽市中考數(shù)學試卷(解析版) 題型:填空題

(2009•綿陽)如圖,直線a∥b,l與a、b交于E、F點,PF平分∠EFD交a于P點,若∠1=70°,則∠2=    度.

查看答案和解析>>

同步練習冊答案