若a、b、c是△ABC的三邊長(zhǎng),且滿足a2c2-b2c2=a4-b4,試判定這個(gè)三角形的形狀.

解:∵a2c2-b2c2=a4-b4,
∴c2(a2-b2)=(a2-b2)(a2+b2)=(a+b)(a-b)(a2+b2),
∵a+b≠0,
∴a=b或c2=a2+b2,
∴該三角形是等腰三角形或直角三角形.
分析:把等式兩邊分解因式,左右兩邊同除以相同的因式,可得c2=a2+b2,根據(jù)勾股定理的逆定理即可判斷三角形的形狀.
點(diǎn)評(píng):本題考查勾股定理的逆定理的應(yīng)用,同時(shí)要靈活掌握分解因式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

22、下列語句錯(cuò)誤的有( 。﹤(gè).
①相等的角是對(duì)頂角;②等角的補(bǔ)角相等;③平面內(nèi),過一點(diǎn)有且只有一條直線與已知直線垂直;④大于直角的角都是鈍角;⑤射線AB和射線BA是兩條射線;⑥若AC=BC,則C是AB的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知,如圖,在直角坐標(biāo)系內(nèi),△ABC的頂點(diǎn)在坐標(biāo)軸上,關(guān)于x的方程x2-4x+m2-2m+5=0有實(shí)數(shù)根,并且AB、AC的長(zhǎng)分別是方程兩根的5倍.
(1)求AB、AC的長(zhǎng);
(2)若tan∠ACO=
43
,P是AB的中點(diǎn),求過C、P兩點(diǎn)的直線解析式;
(3)在(2)問的條件下,坐標(biāo)平面內(nèi)是否存在點(diǎn)M,使以點(diǎn)O、M、P、C為頂點(diǎn)的四邊形是平精英家教網(wǎng)行四邊形?若存在,請(qǐng)直接寫出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

下列說法中正確的是( 。
A、若AP=
1
2
AB,則P是AB的中點(diǎn)
B、若AB=2PB,則P是AB的中點(diǎn)
C、若AP=PB,則P是AB的中點(diǎn)
D、若AP=PB=
1
2
AB,則P是AB的中點(diǎn)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在⊙O中,若圓心角∠AOB=100°,C是
AB
上一點(diǎn),則∠ACB等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

在線段AB上順次取三點(diǎn)C、D、E.
(1)若C、D、E是AB的四個(gè)等分點(diǎn),畫出圖形,并求圖中所有線段條數(shù);
(2)若AB=12,求(1)中所有線段的長(zhǎng)度;
(3)當(dāng)C、D、E是線段上順次三點(diǎn)時(shí),若AB=12.CE=2,求圖中所有線段的長(zhǎng)度和.

查看答案和解析>>

同步練習(xí)冊(cè)答案