精英家教網 > 初中數學 > 題目詳情
已知,如圖,AB是半圓O的直徑,點C是半圓上的一點,過點C作CD⊥AB于D,AC=2cm.AD:DB=4:1,求AD的長.

【答案】分析:連接BC,構造直徑所對的圓周角是直角,發(fā)現直角三角形,根據射影定理求解.
解答:解:連接BC.
∵AB是半圓O的直徑,
∴∠ACB=90°.
∵CD⊥AB,
∴∠ADC=90°.
∴∠ACB=∠ADC.
∵∠A=∠A,
∴△ACD∽△ABC.

設DB=xcm,則AD=4xcm,AB=5xcm.

即5x×4x=(22
解得x=
∴AD=4cm.
點評:此題考查了圓周角定理和相似三角形的性質,主要是熟練掌握射影定理.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

精英家教網已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點,E是AB上除O外的一點,AC與DE相交于F.①
AD
=
CD
,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個為條件,推出第三個(結論)”的一個正確命題,并加以證明;
(2)“以①②③中的任意兩個為條件,推出笫三個(結論)”可以組成多少個正確的命題?(不必說明理由)

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•沈陽)已知,如圖,在平面直角坐標系中,點A坐標為(-2,0),點B坐標為(0,2),點E為線段AB上的動點(點E不與點A,B重合),以E為頂點作∠OET=45°,射線ET交線段0B于點F,C為y軸正半軸上一點,且OC=AB,拋物線y=-
2
x2+mx+n的圖象經過A,C兩點.
(1)求此拋物線的函數表達式;
(2)求證:∠BEF=∠AOE;
(3)當△EOF為等腰三角形時,求此時點E的坐標;
(4)在(3)的條件下,當直線EF交x軸于點D,P為(1)中拋物線上一動點,直線PE交x軸于點G,在直線EF上方的拋物線上是否存在一點P,使得△EPF的面積是△EDG面積的(2
2
+1)倍?若存在,請直接寫出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2009-2010學年吉林省長春市外國語學校九年級(上)期中數學試卷(解析版) 題型:解答題

已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點,E是AB上除O外的一點,AC與DE相交于F.①,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個為條件,推出第三個(結論)”的一個正確命題,并加以證明;
(2)“以①②③中的任意兩個為條件,推出笫三個(結論)”可以組成多少個正確的命題?(不必說明理由)

查看答案和解析>>

科目:初中數學 來源:2003年全國中考數學試題匯編《圓》(09)(解析版) 題型:解答題

(2003•綿陽)已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點,E是AB上除O外的一點,AC與DE相交于F.①,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個為條件,推出第三個(結論)”的一個正確命題,并加以證明;
(2)“以①②③中的任意兩個為條件,推出笫三個(結論)”可以組成多少個正確的命題?(不必說明理由)

查看答案和解析>>

科目:初中數學 來源:2003年四川省綿陽市中考數學試卷(解析版) 題型:解答題

(2003•綿陽)已知:如圖,AB為⊙O的直徑,C、D是半圓弧上的兩點,E是AB上除O外的一點,AC與DE相交于F.①,②DE⊥AB,③AF=DF.
(1)寫出“以①②③中的任意兩個為條件,推出第三個(結論)”的一個正確命題,并加以證明;
(2)“以①②③中的任意兩個為條件,推出笫三個(結論)”可以組成多少個正確的命題?(不必說明理由)

查看答案和解析>>

同步練習冊答案