【題目】如圖,已知拋物線 的對稱軸x=-1,且拋物線經(jīng)過兩點,與軸交于點.
⑴.若直線經(jīng)過兩點,求直線所在直線的解析式;
⑵.拋物線的對稱軸x=-1上找一點,使點到點的距離與到點的距離之和最小,求出此點的坐標;
⑶.設點為拋物線的對稱軸x=-1上的一個動點,求使△為直角三角形的點的坐標.
【答案】(1)y=x+3;(2)(-1,2);(3)(-1,-2)或(-1,4)或(-1,)或(-1,).
【解析】
試題分析:(1)先把點A,C的坐標分別代入拋物線解析式得到a和b,c的關系式,再根據(jù)拋物線的對稱軸方程可得a和b的關系,再聯(lián)立得到方程組,解方程組,求出a,b,c的值即可得到拋物線解析式;把B、C兩點的坐標代入直線y=mx+n,解方程組求出m和n的值即可得到直線解析式;
(2)設直線BC與對稱軸x=-1的交點為M,則此時MA+MC的值最。x=-1代入直線y=x+3得y的值,即可求出點M坐標;
(3)設P(-1,t),又因為B(-3,0),C(0,3),所以可得BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,再分三種情況分別討論求出符合題意t值即可求出點P的坐標.
試題解析:(1)依題意得:,
解之得:,
∴拋物線解析式為y=-x2-2x+3
∵對稱軸為x=-1,且拋物線經(jīng)過A(1,0),
∴把B(-3,0)、C(0,3)分別代入直線y=mx+n,
得,
解之得:,
∴直線y=mx+n的解析式為y=x+3;
(2)設直線BC與對稱軸x=-1的交點為M,則此時MA+MC的值最。
把x=-1代入直線y=x+3得,y=2,
∴M(-1,2),
即當點M到點A的距離與到點C的距離之和最小時M的坐標為(-1,2);
(3)設P(-1,t),
又∵B(-3,0),C(0,3),
∴BC2=18,PB2=(-1+3)2+t2=4+t2,PC2=(-1)2+(t-3)2=t2-6t+10,
①若點B為直角頂點,則BC2+PB2=PC2即:18+4+t2=t2-6t+10解之得:t=-2;
②若點C為直角頂點,則BC2+PC2=PB2即:18+t2-6t+10=4+t2解之得:t=4,
③若點P為直角頂點,則PB2+PC2=BC2即:4+t2+t2-6t+10=18解之得:t1=,t2=;
綜上所述P的坐標為(-1,-2)或(-1,4)或(-1,)或(-1,).
科目:初中數(shù)學 來源: 題型:
【題目】一個數(shù)的絕對值等于它的相反數(shù),那么這個數(shù)是( )
A.是正數(shù)
B.是負數(shù)
C.是非負數(shù)
D.是非正數(shù)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙O交AB于點D,過點D作DE⊥AC于點E,交BC的延長線于點F.
求證:
(1)AD=BD;
(2)DF是⊙O的切線.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,請在下列四個關系中,選出兩個恰當?shù)年P系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.(寫出一種即可)
關系:①AD∥BC,②AB=CD,③∠A=∠C,④∠B+∠C=180°.
已知:在四邊形ABCD中, , ;
求證:四邊形ABCD是平行四邊形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法中正確的是( )
A.四邊相等的四邊形是菱形
B.一組對邊相等,另一組對邊平行的四邊形是菱形
C.對角線互相垂直的四邊形是菱形
D.對角線互相平分的四邊形是菱形
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列各式由左到右的變形中,屬于分解因式的是( 。
A. a2﹣4+4a=(a+2)(a﹣2)+4a B. a(m+n)=am+an
C. a2﹣b2﹣c2=(a﹣b)(a+b)﹣c2 D. 12a2﹣3a=3a(4a﹣1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com