平面直角坐標(biāo)中,對(duì)稱軸平行于y軸的拋物線經(jīng)過(guò)原點(diǎn)O,其頂點(diǎn)坐標(biāo)為(3,-);Rt△ABC的直角邊BC在x軸上,直角頂點(diǎn)C的坐標(biāo)為(,0),且BC=5,AC=3(如圖(1)).
(1)求出該拋物線的解析式;
(2)將Rt△ABC沿x軸向右平移,當(dāng)點(diǎn)A落在(1)中所求拋物線上時(shí)Rt△ABC停止移動(dòng).D(0,4)為y軸上一點(diǎn),設(shè)點(diǎn)B的橫坐標(biāo)為m,△DAB的面積為s.
①分別求出點(diǎn)B位于原點(diǎn)左側(cè)、右側(cè)(含原點(diǎn)O)時(shí),s與m之間的函數(shù)關(guān)系式,并寫出相應(yīng)自變量m的取值范圍(可在圖(1)、圖(2)中畫出探求);
②當(dāng)點(diǎn)B位于原點(diǎn)左側(cè)時(shí),是否存在實(shí)數(shù)m,使得△DAB為直角三角形?若存在,直接寫出m的值;若不存在,請(qǐng)說(shuō)明理由.

【答案】分析:(1)根據(jù)拋物線頂點(diǎn)坐標(biāo)為(3,-),利用頂點(diǎn)式求出即可;
(2)根據(jù)當(dāng)點(diǎn)B位于原點(diǎn)左側(cè)時(shí)以及當(dāng)點(diǎn)B位于原點(diǎn)右側(cè)(含原點(diǎn)O)時(shí),分別分析即可得出答案.
解答:解:(1)由題意,設(shè)所求拋物線為
y=a(x-3)2-.①
將點(diǎn)(0,0)代入①,得a=
∴y=x2-3x.

(2)①當(dāng)點(diǎn)B位于原點(diǎn)左側(cè)時(shí),如圖(1):
S=S△OBD+S梯形OCAD-S△ABC
=•4•(-m)+(4+3)(5+m)-,
=m+10.
∴S=m+10.(-4.5≤m<0),
當(dāng)點(diǎn)B位于原點(diǎn)右側(cè)(含原點(diǎn)O)時(shí),如圖(2):
S=S梯形OCAD-S△OBD-S△ABC,
=(4+3)(5+m)-•4•m-,
=m+10.
∴S=m+10.(0≤m<-2),
②m1=-1,m2=-4,m3=-4.4.
點(diǎn)評(píng):此題主要考查了二次函數(shù)的綜合應(yīng)用,根據(jù)頂點(diǎn)式求出二次函數(shù)解析式是解題關(guān)鍵,注意根據(jù)B位置進(jìn)行討論,不要漏解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面直角坐標(biāo)中,直角梯形OABC的頂點(diǎn)A的坐標(biāo)為(4,0),直線y=-
14
x+3經(jīng)過(guò)頂點(diǎn)B,與y軸交于頂點(diǎn)C,AB∥OC.
(1)求頂點(diǎn)B的坐標(biāo);
(2)如圖2,直線l經(jīng)過(guò)點(diǎn)C,與直線AB交于點(diǎn)M,點(diǎn)O?為點(diǎn)O關(guān)于直線l的對(duì)稱點(diǎn),連接CO?,并延長(zhǎng)交直線AB于第一象限的點(diǎn)D,當(dāng)CD=5時(shí),求直線l的解析式;
(3)在(2)的條件下,點(diǎn)P在直線l上運(yùn)動(dòng),點(diǎn)Q在直線OD上運(yùn)動(dòng),以P、Q、B、C為頂點(diǎn)的四邊形能否成為平行四邊形?若能,求出點(diǎn)P的坐標(biāo);若不能,說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

8、在平面直角坐標(biāo)中,點(diǎn)P(1,-1)關(guān)于x軸的對(duì)稱點(diǎn)坐標(biāo)是
(1,1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、在平面直角坐標(biāo)中,點(diǎn)P(1,-3)關(guān)于x軸的對(duì)稱點(diǎn)坐標(biāo)是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面直角坐標(biāo)中,直角梯形OABC的頂點(diǎn)A的坐標(biāo)為(4,0),直線經(jīng)過(guò)頂點(diǎn)B,與y軸交于頂點(diǎn)C,AB∥OC。

    (1)求頂點(diǎn)B的坐標(biāo);

    (2)如圖2,直線l經(jīng)過(guò)點(diǎn)C,與直線AB交于點(diǎn)M,點(diǎn)O´為點(diǎn)O關(guān)于直線l的對(duì)稱點(diǎn),連接CO´,并延長(zhǎng)交直線AB于第一象限的點(diǎn)D,當(dāng)CD=5時(shí),求直線l的解析式;

    (3)在(2)的條件下,點(diǎn)P在直線l上運(yùn)動(dòng),點(diǎn)Q在直線OD上運(yùn)動(dòng),以P、Q、B、C為頂點(diǎn)的四邊形能否成為平行四邊形?若能,求出點(diǎn)P的坐標(biāo);若不能,說(shuō)明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2013屆遼寧省東港市石佛中學(xué)九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

如圖,在平面直角坐標(biāo)中,△ABC的三個(gè)頂點(diǎn)分別為A(―2,―1),B(―1,1)C(0,―2).

(1)點(diǎn)B關(guān)于坐標(biāo)原點(diǎn)O對(duì)稱的點(diǎn)的坐標(biāo)為       
(2)將△ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后得到的△A1B1C;
(3)求過(guò)點(diǎn)B1的反比例函數(shù)的解析式.

查看答案和解析>>

同步練習(xí)冊(cè)答案