已知關于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有兩個不相等的實數(shù)根,則m的取值范圍是   
【答案】分析:本題是根的判別式的應用,因為關于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有兩個不相等的實數(shù)根,所以△=b2-4ac>0,從而可以列出關于m的不等式,求解即可,還要考慮二次項的系數(shù)不能為0.
解答:解:∵關于x的一元二次方程(m-2)2x2+(2m+1)x+1=0有兩個不相等的實數(shù)根,
∴△=b2-4ac>0,即(2m+1)2-4×(m-2)2×1>0,
解這個不等式得,m>,
又∵二次項系數(shù)是(m-2)2,
∴m≠2
故M得取值范圍是m>且m≠2.
點評:1、一元二次方程根的情況與判別式△的關系:
(1)△>0?方程有兩個不相等的實數(shù)根;
(2)△=0?方程有兩個相等的實數(shù)根;
(3)△<0?方程沒有實數(shù)根.
2、二次項的系數(shù)不為0是學生常常忘記考慮的,是易錯點.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次x2+(2k-3)x+k2=0的兩個實數(shù)根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x的一元二次x2-6x+k+1=0的兩個實數(shù)根x1,x2,
1
x1
+
1
x2
=1
,則k的值是( 。
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中數(shù)學 來源:第23章《一元二次方程》中考題集(23):23.3 實踐與探索(解析版) 題型:解答題

已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中數(shù)學 來源:2007年全國中考數(shù)學試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2007•汕頭)已知關于x的一元二次2x2-(2m2-1)x-m-4=0有一個實數(shù)根為
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步練習冊答案